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ABSTRACT

A Comparison of the Effects of Interval Training vs. Continuous Training on Weight Loss and
Body Composition in Obese Pre-Menopausal Women

by

Jeffrey W. King

The purpose of this study was to investigate the role exercise intensity plays in reducing body
weight and percent body fat in overweight women.  Subjects were randomized to either a high
intensity interval training group (IT) or a lower intensity steady state training group (ST). Each
group exercised 3 times per week for 8 weeks and expended 300 kcal per exercise session.
VO2max, body composition, and resting metabolic rate (RMR) were measured pre and post
training.  RMR was measured after exercise at week 2 to see if intensity levels affected RMR.
VO2max and body composition improved in IT but not in ST.  Neither group showed a change in
RMR from pretest to posttest; however, IT had an increase in RMR 24 hours post-exercise
whereas ST did not.  These findings show that high intensity interval exercise produces
improvements in body composition, fitness, and acute RMR compared to low intensity steady
state training.
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CHAPTER 1

INTRODUCTION

In today’s health-conscious society, there is a growing awareness of obesity in the United

States.  For various reasons, many people are becoming not just overweight, but over-fat as well.

For reasons of appearance, health, or both, many overweight people undertake some form of diet

or exercise program.  At almost every grocery store check-out-stand, women’s magazines

describe new fad diets each month. Weight-loss drinks are popular and may aid in weight loss,

but most people prefer to eat actual food than a milkshake every day.  More and more health

clubs are sprouting up all around the country to help people get in shape and lose weight.  Health

clubs aid in losing weight, but the same person who desperately strives to sell memberships is

likely to do very little to encourage new members to return.  Therefore, adherence to exercise,

which is important in weight loss programs, becomes a major issue.

Changes in diet and/or exercise patterns are the primary ways for one to lose weight.  A

change in diet facilitates weight loss by restricting total caloric as well as fat intake.  A change in

exercise patterns also facilitates weight loss by increasing caloric and fat expenditure (Keim,

Barbieri, Van Loan, & Anderson, 1990).  Even though individuals may attempt to lose weight,

many never meet their goals.  Weight loss programs often lack the two major elements needed

for long-term adherence—enjoyment and results.  Someone may diet and exercise for a brief

time, however, a lack of change in either appearance or weight (Grediagin, Cody, Rupp,

Benardot, & Shern, 1995) and a lack of time or interest (Willis & Campbell, 1992) may prevent

adherence to the weight loss program.
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The problem of obesity is not unique to one segment of the population.  Both men and

women begin diet and exercise programs in an attempt to lose weight and body fat.  However,

women tend to have greater problems losing weight than men (Gleim, 1993).  Women generally

have smaller body sizes (Gleim), less fat free mass (Pollock et al., 1998; Westerterp, 1998), and

lower resting metabolic rates (RMR) (Westerterp) than men.  Men have greater testosterone

levels than women, which causes them to have a greater muscle mass and absolute RMR than

women (McArdle, Katch, & Katch, 1996).  All of these factors cause women’s energy

expenditures for a given activity to be less than that of men.  For this reason, it is important to

find an exercise and/or diet program for women that will produce the results necessary for the

participants to adhere to that program.

Traditionally, low intensity exercise was considered to be more beneficial than high

intensity exercise because a greater percentage of fat calories are burned during low intensity

exercise (McArdle et al., 1996).  However, this line of thinking failed to consider the fact that a

person’s total energy expenditure per unit time is also very low; and consequently, the

theromogenic effects during and following exercise are minimal.  In contrast, while high

intensity exercise requires a greater percentage of calories (kcal) from carbohydrate sources, the

amount of total and/or fat calories used during and after exercise is often greater than that of

lower intensity exercise.  More importantly, following exercise, fat metabolism and RMR can be

elevated for up to 24 hours (Bielinski, Schultz, & Jéquier, 1985; Treuth, Hunter, & Williams,

1996).  This acute increase in fat metabolism and RMR will serve to aid in the facilitation of

weight loss (via increased total daily energy expenditure (TDEE)) and in the metabolism of fat as

opposed to carbohydrates.  Currently, one of the more highly debated exercise methods is that of

interval training as a possible treatment intervention for promoting a lean body.  The participant
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intermittently exercises at a high intensity alternating with a lower intensity every few minutes.

Conversely, in continuous steady state training the participant exercises at the same intensity

throughout the duration of the protocol.  Even if an equal number of calories is expended during

a high intensity interval training program as in a more moderate intensity steady state training

program, substrate utilization during exercise will differ between the two programs.  A higher

intensity program would use primarily glycogen during exercise whereas a more moderate

intensity program would use primarily fat.  It is not uncommon for an individual to interpret this

information as an argument that low to moderate intensity exercise is better for burning fat.

However, this does not consider the fact that fat metabolism is increased after exercise, not just

serving as the body’s fuel source for any post-exercise activity, but also to replenish the glycogen

stores depleted by the high intensity exercise.  Many individuals are unable to maintain an

extremely high intensity for an extended period of time, therefore necessitating that near

maximal exercise be completed in an interval training program rather than a continuous steady

state program.

Even though previous studies exist concerning the effect of interval training on

performance, interval training has not been used as a possible means of weight loss, particularly

in overweight women.  Those studies that used overweight women as subjects used steady state

training protocols for both the high intensity and low intensity training groups and found no

significant differences between groups of overweight women when comparing body composition

changes with high intensity and low intensity training.  Grediagin et al. (1995) used overweight

women and found no significant differences in weight, fat-free mass, and body fat percentage

between a high-intensity training group (~80% of VO2max) and a low-intensity training group

(~50% of VO2max) when caloric expenditure due to exercise was held constant.  As Grediagin et
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al. used a steady state program only, it remains unclear whether an interval training program that

utilizes a greater intensity would cause decreases in weight and body fat percentage.  If an

interval training program is shown to produce changes in body weight and body composition,

perhaps that type of program would be more appealing to those who have difficulty adhering to

longer continuous steady state exercise programs.

Statement of the Problem

The purpose of this study was to compare the effects of high intensity interval versus low

intensity steady state training on weight loss and body composition in obese pre-menopausal

women.  There is a lack of studies dealing with high intensity interval training programs as a

potential means of weight loss. This indicates that such research must be conducted to determine

if high intensity interval training is a viable means to reduce total body weight and fat mass.

Several sub-problems existed in determining the effect of high intensity interval training

on weight loss and body composition.  One sub-problem was the effect of the training method,

either interval or steady state, on lean body mass.  An increase in lean body mass could result in

little or no change in weight, even if it coincided with a decrease in fat mass.  An increase in lean

body mass would accompany an increase in RMR, which could lead to a long-term change in

body composition.  Of greater importance than the effect on lean body mass was the possible

effect of the training method on resting energy expenditure.  An increase in RMR, and therefore

TDEE, would facilitate weight loss while an individual is not exercising.

The primary dependent variables that were measured in this study were body weight and

percent body fat.  From these two variables, lean body mass was derived.  Resting metabolic rate
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was measured, as any change in RMR is crucial in the explanation of any differences in weight

loss and body composition.  Maximal oxygen uptake (VO2max) was also measured in order to

determine the appropriate training intensity for each subject.  As previously noted, the primary

independent variable in this study was the modality of training: interval training or steady state

training.

Significance of Study

Obesity is a growing problem in the United States and currently affects over 50% of the

adult population to some degree (National Institutes of Health [NIH], 1998b).  Many people

consider obesity to be a cosmetic problem.  However, obesity increases a person’s risk of

significant health problems, the most important of which is coronary artery disease (American

College of Sports Medicine, 1995).  Every year, the health costs of obesity-related diseases

approach $100 billion (NIH, 1998b).  Effective weight loss programs for obese women nearing

menopause have been difficult to find. After several months of exercise without any noticeable

results, many people lose their motivation to continue exercise.  In order to increase adherence to

exercise, it is necessary to find a safe and efficient mode of exercise that allows the participant to

see steady and significant results.  Although improved cardiovascular fitness far outweighs

physical appearance from a health standpoint, appearance is a far more tangible measure for the

general population. Even though some participants are motivated by noticeable improvements in

cardiovascular fitness, many will be deterred from exercising if they do not see a change in their

body appearance with an exercise program designed to promote weight loss.  Therefore, it is

important to find a weight loss method that produces visible results.  This study was intended to

find a method of training, either aerobic or anaerobic, that will aid in the facilitation of body
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weight loss and fat loss.  The loss of weight and fat will increase the likelihood of participant

adherence to a weight loss program.

Research Hypotheses

Even if caloric expenditure during exercise is held constant between a high intensity

interval training program and a low intensity steady state training program, a higher intensity

program can increase fat metabolism and RMR for 24 hours after exercise to a greater extent

compared to a lower intensity program (Bielinski, et al., 1985; Treuth et al., 1996).

Approximately 60-75% of TDEE comes from RMR (Wilmore & Costill, 1994); therefore, a

significant increase in RMR will increase TDEE substantially.  In turn, an increase in TDEE will

facilitate weight loss.  Higher intensity exercise may also produce post-exercise increase in fat

metabolism, which will facilitate fat loss throughout the day at a greater rate than low intensity

exercise (Broeder et al., 1991).  The high intensity interval training program may have a greater

likelihood of causing an acute increase in RMR than a low intensity steady state program.  As

such, this study had three hypotheses: 1) high intensity interval training will produce a greater

increase in RMR 24 hours following an exercise session than low intensity steady state training;

2) high intensity interval training will produce greater loss of total body weight than low

intensity steady state training; and 3) high intensity interval training will produce a greater loss

of fat mass than low intensity steady state training.

Delimitations

Subjects in the present study were limited to 18 to 45 year-old female non-smokers with a

body fat percentage ∆ 30%.  It was confirmed that older subjects had not yet reached menopause.
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Individuals with cardiac conditions such as hypertension or uncontrolled diabetes or other

conditions that would be contraindicated for exercise testing and training were not admitted to

the study.  Any individual who was taking medications that would alter metabolism was not

admitted into the study.  Each subject kept a daily food intake record that was used to determine

if dietary changes occurred that might enhance or counteract the effect of the treatment.

The subject sample was comprised of volunteers from the surrounding community.  The

initial sample consisted of 32 subjects, 17 of whom dropped out of the study due to various

reasons.  Of the remaining 15 subjects, 7 subjects were assigned to an interval training group and

8 were assigned to a steady state group. A power analysis that was run based on the

specifications of Glantz (1992) determined that 15 subjects would be appropriate for the present

study.

Body composition was measured using dual energy x-ray absorptiometry (DEXA).

Maximal aerobic capacity was measured using a graded exercise treadmill test.  The results of

the VO2max test were used to determine the level at which a subject needed to exercise for a

given exercise intensity.  Resting metabolic rate was measured in the morning following a 30-

minute rest period and under optimal resting conditions.

Assumptions

The following assumptions were made in this study:

1.  With the exception of the research treatment, subjects neither increased nor decreased

their daily activity from levels previous to the study.

2. Subjects neither increased nor decreased their daily caloric intake from levels

previous to the study.
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3. An increase in RMR would lead to an increased in TDEE.

4. An increase in TDEE that is greater than daily caloric intake would lead to weight

loss.

Limitations

The following limiting factors of the study were recognized:

1. The only way to determine if a subject was working exactly at a given percentage of

her VO2max was through the use of indirect calorimetry.  The use of a metabolic cart with every

exercise session was not be possible due to time constraints and subject consideration.

Therefore, exercise workload for each subject’s prescribed VO2 was determined using a linear

regression equation derived from her VO2max test.  VO2 was then periodically checked with the

use of a metabolic cart.

2. Many of the measurements have a degree of inter-rater variability.  In order to avoid

differences caused by different raters, the same rater took the same measurements for both the

pretest and the posttest.

3. Changes in estrogen levels during menstruation could effect RMR (Webb, 1986).

While hormonal levels were not be measured directly, no metabolic testing was done during a

subject’s menstrual period.

Definition of Terms

1. Aerobic: exercising using oxygen (Wilmore & Costill, 1994)

2. Anaerobic: exercising without the presence of oxygen; the work intensity is greater than the

rate the body can transport oxygen to be used (Wilmore & Costill, 1994)
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3. Anaerobic threshold: the percentage of VO2max at which metabolism goes from being

aerobic to being anaerobic (Wilmore & Costill, 1994)

4. Body mass index (BMI): describes relative weight for height.  Calculated as either weight

(kg)/height squared (m2) or as [weight (lbs)/height squared (in2)] x 704.5.  A

BMI > 25 is considered overweight and a BMI > 30 is considered obese (National Institutes

of Health, 1998a)

5. Calorie: unit of energy also known as the kilocalorie (kcal).  3500 kcal must be expended to

burn one pound of fat (Wilmore & Costill, 1994)

6. Continuous training:  steady-paced, prolonged exercise (McArdle et al. 1996)

7. Dual Energy X-ray Absorptiometry (DEXA): method of measuring body composition in

which a filtered x-ray tube is used to distinguish between fat tissue, lean body mass, and bone

mineral density (Lohman, 1996).

8. Interval training:  mode of training that involves high-intensity of a very brief duration

interspersed with brief periods of rest or low intensity exercise (McArdle et al., 1996)

9. Maximal oxygen uptake (VO2max): used to measure cardiovascular fitness (ACSM, 1995)

10. Morphology:  the form and structure of the body (Wilmore & Costill, 1994)

11. Obesity:  unhealthy high body fat percentages, generally considered >20% for men and

>30% for women (McArdle et al., 1996)

12. Resting metabolic rate (RMR): amount of energy required to sustain the body at rest.

Accounts for approximately 60 to 75% of total daily energy expenditure (Wilmore & Costill,

1994)

13. Steady-state:  the point in continuous exercise where workload and heart rate become

constant (Wilmore & Costill, 1994)
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14. Total Daily Energy Expenditure (TDEE): the amount of energy expended by the body in a

day.  Total daily energy expenditure is influenced by RMR, the thermogenic effect of food,

and physical activity (McArdle et al., 1996).
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CHAPTER 2

REVIEW OF LITERATURE

Researchers have attempted to determine the most suitable means of combating the

growing problem of obesity in America.  Most studies agree that exercise is an important

component in any weight loss program.  Even though studies may not find dramatic decreases in

weight loss, they have found that exercise preserves lean mass and increases total daily energy

expenditure (TDEE), which may facilitate weight loss over an extended period of time.

However, the research does not agree on the most beneficial form of exercise.  It has been found

that continuous steady state exercise below lactate threshold for prolonged periods is as

beneficial for weight loss or fat loss as higher intensity exercise (Grediagin et al., 1995).

Conversely, interval training above lactate threshold for shorter periods of time has been found

to be more beneficial for increasing TDEE (Treuth et al., 1996) which in turn yields greater

caloric expenditure throughout the day.  Even though high intensity continuous training as a

means of weight loss has been studied (Grediagin et al.), there are limited data on the effects of

high intensity interval training on weight loss or using a female population.  Therefore, the

purpose of the present study is to compare the effects of high intensity interval versus low

intensity steady state training on weight loss and body composition in obese pre-menopausal

women.  The topics that will be covered in this chapter are (a) weight problems in women, (b)

the effects of exercise on weight loss, (c) the effectiveness of exercise weight loss programs,

including discussions on low to moderate intensity exercise and high intensity exercise, and (d)

exercise and resting energy expenditure.
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Weight Problems in Women

In recent years, obesity has become a growing international problem.  The first plausible

cause for the obesity problem is that people are simply eating more.  However, that is not the

only case.  Some researchers have found that over the last several years, the occurrence of

obesity has increased while average energy intake has actually decreased (Hunter, Weinsier,

Bamman, & Larson, 1998).  Although taking in fewer calories, many people are also expending

fewer calories.  A decrease in TDEE combined with an increase in caloric intake has also been

cited as the cause for an increase in the prevalence of obesity (NIH, 1998b).

From the diverging trends in obesity and energy intake, Hunter et al. (1998) deduced that

a decrease in TDEE has accompanied the decrease in daily energy intake.  Grediagin et al.

(1995) also acknowledged this trend.  Heini and Weinsier (1997) found a 4% decrease in average

total calories consumed from 1977 to 1987 (1854 kcal to 1785 kcal).  Heini and Weinsier found a

31% increase in the prevalence of overweight (defined as a body mass index > 27.8 for men and

> 27.3 for women) individuals over the same time period.  Approximately 25.4% of the

American population were obese or overweight in 1977 as compared to 33.3% of the population

in 1987.  These changes in diet and obesity were similar for both men and women.  Although the

above researchers have concluded that inactivity rather than overeating is a major cause of

obesity in today’s society, the NIH has found that this is not necessarily the case.  The NIH has

determined there is an increase in dining out and portion size leading to an increase in caloric

intake in addition to the lack of activity (NIH, 1998b).  This is in contradiction to a previous

report on a reduction of caloric intake by Heini and Weisner.  According to the NIH (1998b),

both a rise in caloric intake and a decrease in TDEE have been found to be the primary causes of

the increase in obesity.  Although the rise in moderate obesity does not necessarily coincide with
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an increase in gross obesity, the increase in moderate obesity causes a greater societal problem

than a few isolated instances of gross obesity (Shinkai et al., 1994).

Women are at a distinct disadvantage when compared to men when it comes to obesity.

Women generally have smaller body sizes, and, as a result, their energy expenditures have been

shown to be less than that of men performing the same activities (Gleim, 1993).  For example, an

85-kg male running 10 kilometers in 45 minutes would expend 917 kcal (ACSM, 1995).  A 55-

kg female running the same distance in the same time would expend only 593 kcal (ACSM,

1995).  The lower energy output is due to the woman’s smaller body mass.  Women are also at a

disadvantage because they tend to have less fat-free mass than men.  The average daily metabolic

rates (ADMR) for women will therefore be less than that of men of the same ages and body sizes

(Westerterp, 1998).  The average basal metabolic rate (BMR) for men is considered to be 38

kcal/m2/h while it is only 35 kcal/m2/h for women (McArdle et al., 1996).  Men have a higher

BMR than women, therefore, they will in turn have a higher ADMR.  The fact that women are in

many cases smaller than men and that their ADMRs tend to be lower than that of men makes the

weight loss process more difficult for women than for men.

The differences between men and women such as increased muscle mass and BMR are

hormonally caused.  Prior to puberty, men and women are physiologically similar; it is the

presence of either testosterone or estrogen that leads to physiological changes.  Increased

testosterone leads to an increase in muscle mass whereas estrogen leads to an increase in fat

deposits.  With exercise, women increase their levels of testosterone, thereby increasing their

muscle mass and BMR (McArdle et al., 1996).
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The Effects of Exercise on Weight Loss

Traditionally, it was thought that low intensity exercise was more beneficial for fat loss

than high intensity exercise.  A greater percentage of fat calories is burned at a lower intensity

and it was therefore thought that this equated to more fat loss (McArdle et al., 1996).  However,

this line of thinking failed to consider the fact that even though high intensity exercise might

have a relatively lower percentage of fat calories expended, more total calories are expended

during high intensity exercise for a given duration. This would increase the absolute number of

fat calories expended during exercise of a given duration.  In addition, low intensity exercise

fails to increase the excess post-exercise oxygen consumption (EPOC) as greatly as high

intensity exercise, especially high intensity exercise of longer durations.  A greater EPOC leads

to an increase in calories expended following the conclusion of the exercise bout (McArdle et al.,

1996).

The most important aspect of how high intensity exercise causes weight and fat loss does

not necessarily occur during the exercise itself.  A higher exercise intensity can also cause an

acute increase in RMR for up to 24 hours post-exercise (Bielinski et al., 1985; Treuth et al.,

1996), which will increase caloric expenditure throughout the day.  Additionally, even though

high intensity exercise does not use as much relative fat as a fuel source during exercise, fat is

burned to a greater extent following exercise in order to replenish the glycogen stores depleted

during the high intensity exercise.

Some researchers have concluded that exercise without caloric restriction is not an

effective means of absolute weight loss because exercise preserves or, in the case of resistance or

high intensity cardiovascular exercise, increases fat-free mass (Keim et al., 1990; Kempen, Saris,

& Westerterp, 1995).  Researchers have also found that high intensity exercise facilitates fat
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mass loss as well as preserving fat-free mass at a greater rate than low intensity exercise

(Grediagin et al., 1995; Keim et al.; Racette, Schoeller, Kushner, Neil, & Herling-Iaffaldano,

1995; Tremblay, Simoneau, & Bouchard, 1994).  This increase in fat-free mass serves to increase

an individual’s absolute RMR (Grediagin et al.), which, in turn, causes an increase in TDEE

(Treuth et al., 1996) and, therefore, increases overall caloric expenditure.

It is necessary to find an exercise program that maximizes a woman’s energy

expenditure, thereby facilitating weight and fat loss.  A major element in determining the type of

exercise program that best facilitates weight loss is the program’s effectiveness in increasing

RMR, which will in turn increase TDEE (Hunter et al., 1998).  A higher intensity program

should cause a greater acute increase in RMR than a low intensity steady state program

(Bielinski et al., 1985).

The Effectiveness of Exercise Weight Loss Programs

There exists a need to find a weight loss program that works effectively for women.

Several studies have been conducted to determine the effectiveness of various exercise programs.

Exercise programs of varying intensity and duration have been examined in order to determine

which program is the most efficient for weight and fat loss. The following review will evaluate

the effects of exercise and caloric restriction on weight loss and cardiovascular fitness.

Low to Moderate Intensity Exercise

Keim et al. (1990) divided 10 obese women (mean of 129 ± 4% of body weight desirable

for height) into a group that underwent both exercise and caloric restriction (mean age 27 ± 3

years) and another that exercised only (mean age 25 ± 3 years).  All subjects were admitted to
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the metabolic suite in the research center for the duration of the study.  Half of the subjects were

placed on a diet necessary to maintain the subjects’ weights without exercise and the other half

were placed on a diet that allowed for only one-half of the caloric intake needed to maintain

weight without exercise.  Both groups exercised 6 days per week at 65-80% of the subject’s

VO2max.  The duration of the exercise program varied from subject to subject so that caloric

expenditure due to exercise was constant.  Exercise energy expenditure was set at 15% of the

caloric intake necessary for each subject to maintain weight.  There was a significant difference

in weight loss (p < 0.05) between the diet/exercise group (13.08 ± 0.71 kg) and the exercise

group (5.61 ± 0.62 kg).  Using bioelectrical impedance it was found that 33% of the weight lost

by the diet/exercise group was lean body mass whereas only 14% of the weight lost by the

exercise group was lean body mass.  This difference in lean body mass was not statistically

significant, but it does indicate the tendency for exercise to preserve lean body mass.

Although Keim et al. (1990) exercised each treatment group so that all subjects would

have the same caloric expenditure during exercise, causing duration to range from 31 minutes to

49 minutes, exercise intensity was not specifically set for either group.  A wide intensity range of

65-80% of VO2max gives no indication of the effects of exercise intensity on weight loss. Keim

et al. also estimated VO2max using a submaximal test rather than finding a true VO2max.  Keim

et al. also estimated energy expenditure through heart rate, not indirect calorimetry.  Even though

Keim et al. found exercise to somewhat facilitate weight loss, the estimation of VO2max and the

wide intensity range provide little information regarding weight loss and exercise intensity.

Keim et al. (1990) are not alone in their findings that exercise in the presence of caloric

restriction works to increase fat loss while preserving fat-free mass.  Using a moderate exercise

intensity (50-60% VO2max) for 90 minutes per session three times per week for 8 weeks,
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Kempen et al. (1995) found differences in substrate utilization for the diet group (D) when

compared to the diet/exercise group (DX) (p< 0.05).  Both groups were comprised of obese

women (mean % body fat: D: 41.8 ± 1.5%; DX: 41.6 ± 1.5%) ages 25-50.  The caloric restriction

group was found to use 55% carbohydrates and 45% fats during exercise at the beginning of the

study.  At the end of the study, substrate utilization was found to be 60% carbohydrates and 40%

fats.  The change in substrate utilization from the beginning to the end of the study was not

significant.   The initial substrate utilization for the caloric restriction/moderate exercise group

was 70% carbohydrates and 30% fats (p<0.05).  At the end of the study, substrate utilization

changed significantly (p< 0.05) to 55% carbohydrates and 45% fats.  This increase in fat

utilization indicates the propensity for exercise to increase the overall expenditure of fat as

energy, therefore promoting fat loss.

Racette et al. (1995) confirmed the previous findings that exercise prevented the loss of

fat-free mass.  Racette et al. assigned 30 obese (body fat > 35%) pre-menopausal women (mean

age 39 ± 5 years) to four groups: low fat diet/exercise (LFX), low fat diet/no exercise (LFNX),

low carbohydrate diet/exercise (LCX), and low carbohydrate diet/no exercise (LCNX).  The low

fat diet consisted of 18% fat and 59% carbohydrates and the low carbohydrate diet consisted of

49% fat and 27% carbohydrates.  Approximately one-fourth of all diets consisted of protein.  The

exercise protocol consisted of 45 minutes of exercise at 60-65% of VO2max for 45 min/session

three times per week for 12 weeks.  The two groups that exercised had a trend to lose more

weight (10.5 ± 3.3 kg) than the two groups that did not exercise (8.3 ± 2.6 kg; p=0.079).

Although this loss was not significant, Racette et al. noted the similarities between their findings

and those of other researchers that also found that groups that exercised lost more weight than

those that did not (Hill et al., 1989; Hammer, Barrier, Roundy, Bradford, & Fisher, 1989; Pavlou,
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Steffe, & Lerman, 1985).  However, more important than the difference in weight loss is the

difference in fat loss, which was measured using isotope mass ratio spectrometry.  In the exercise

groups, 89.4% of the weight lost consisted of fat mass.  This compares to only 71.3% fat loss in

the groups that did not exercise.  This difference in fat loss adds to the evidence that an exercise

program is important in a weight loss program in that the addition of exercise to diet retains a

higher percentage of fat-free mass.

Even though much of the research into weight loss consists of a caloric restriction

component in addition to exercise, Grediagin et al. (1995) used high and low intensity exercise to

examine weight loss changes.  They used an initial sample of 18 moderately over-fat women

(31.1 ± 3.8% body fat and 30 ± 5 years old for the high intensity training group and 31.0 ± 4.8%

body fat and 31 ± 6 years old for the low intensity training group) who were equally divided into

either a low intensity  (LI) training group (~ 50% VO2max) or a high intensity (HI) training

group (~ 80% VO2max).  Each group exercised on a treadmill four times a week for 12 weeks.

The duration of each exercise bout was set at whatever level was necessary to elicit the

expenditure of 300 kcal given a subject’s weight and intensity level.  Grediagin et al. found no

significant between group differences for any of the changes in dependent variables: weight (HI:

-0.7 ± 2.6 lbs; LI:  -3.3 ± 2.6 lbs ; p = 0.115), body mass index (HI: -0.1 ± 0.4; LI: -0.6 ± 0.5; p =

0.078), percent body fat (HI: -3.4 ± 4.1%; LI: -2.9 ± 3.9%; p = 0.827), sum of skinfolds (HI:-

16.1 ± 7.0 mm; LI: -15.8 ± 6.5 mm; p = 0.947), sum of circumferences (HI: -7.0 ± 4.5 cm; LI: -

11.4 ± 6.8 cm; p = 0.223), fat mass (HI: -5.0 ± 5.8 lbs; LI: -5.0 ± 5.8 lbs; p = .992), fat-free mass

(HI: +4.3 ± 5.4 lbs; LI: +1.8 ± 5.0 lbs; p = 0.417), and VO2max (HI: +3.6 ± 6.0 ml•kg-1•min-1;

LI: +4.2 ± 4.4 ml•kg-1•min-1; p = 0.831).
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However, in one case Grediagin et al. (1995) found a significant pretest and posttest

difference for the low intensity group where no significant change existed within the high

intensity group.  The low intensity training group lost a significant amount of weight (3.3 ± 2.6

lbs, p < 0.05), whereas the high intensity training group lost only 0.7 ±2.6 lbs.  Since both groups

lost an identical amount of fat mass (5.0 ± 5.8 lbs), measured using hydrostatic weighing and

skinfold measurements, the between group difference in weight loss can be attributed to the fact

that the high intensity training group increased fat-free mass more than the low intensity training

group.  The high intensity training group increased fat-free mass by 4.3 ± 5.4 lbs.  The low

intensity training group increased fat-free mass by 1.8 ±5.0 lbs.  Although neither figure is

significant, the fact that this difference accounted for the significant decrease in body weight by

the low intensity group could suggest a possible role of high intensity training in preserving fat-

free mass, which will prevent a decrease in RMR.

Grediagin et al. (1995) found no difference between fat mass lost with high intensity

training and fat mass lost with low intensity training and concluded that fat loss is the result of

energy expenditure during exercise rather than intensity.  However, the lack of any significant

between group differences or significant intra-group differences could be accounted for by the

small overall sample size (N=12).  The lack of significance of the between group differences

could also be a result of the fact that the exercise protocols differed only in intensity and that the

“high intensity” group exercised at approximately 80% of VO2max rather than at or above the

VO2max.  Both an increased exercise intensity and a larger sample size may have produced

different results.



27

High Intensity Exercise

Even though cardiovascular exercise has been determined to advance the loss of fat mass,

it still must be determined what type of cardiovascular exercise plays a greater role in fat loss:

high intensity-short duration or low intensity-long duration.  Tremblay et al. (1994) found that

even though continuous endurance training led to a greater energy expenditure due to exercise

than interval training, interval training led to a greater reduction in skinfolds.  Tremblay et al.

assigned their sample of 27 inactive subjects (13 male and 14 female, age 18 to 32 years) to two

groups.  Seventeen subjects were placed in an endurance training group  (mean body weight 60.6

± 13.4 kg) and ten subjects were placed in an interval training group (mean body weight 63.9 ±

11.0 kg).  The protocol for the endurance training group lasted 20 weeks and the intensity began

at 60% and increased to 85% of maximal heart rate reserve over the course of the study.  The 15-

week protocol for the interval training group consisted of three different programs.  The greatest

intensity at which subjects exercised was approximately 70% of the subject’s 90-second maximal

power output on the cycle.  Short intervals ranged in duration from 15 to 30 seconds and longer

intervals ranged in duration from 60 to 90 seconds.

Tremblay et al. (1994) found no decrease in weight for either the endurance training

group (pre: 60.6 ± 13.4 kg; post: 60.1 ± 12.1 kg) or the interval training group (pre: 63.9 ± 11.0

kg; post: 63.8 ± 11.5 kg).  The lack of a change in weight could be because none of the subjects

were obese, therefore none had a large amount of weight to lose. The lack of weight loss could

also be due to the fact that the subjects’ diets were not controlled to prevent them from

increasing their energy intake.  Tremblay et al., however, found a significant difference in energy

expenditure due to exercise between the two programs.  The energy expenditure per session of

the endurance training program was 120.4 ± 31.0 MJ whereas the energy expenditure per session
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of the interval training program was 57.9 ± 14.4 MJ (p < 0.01).  Even though energy expenditure

was greater for the endurance training group, Tremblay et al. found that the interval training

program resulted in a greater change in the mean sum of six skinfolds.  The interval training

group had a significant decrease in skinfold sums (94.2 ± 37.7 mm to 80.3 ± 36.0 mm; p < 0.01)

whereas the endurance training group did not (79.2 ± 35.1 mm to 74.7 ± 34.2 mm; NS).  Despite

the significant decrease in skinfold sums for the interval training group, there was no between

group difference in the degree of change for each group.  However, once corrected for energy

expenditure, the change in skinfold sum of the endurance training group was ~0.04 mm/MJ

whereas the change for the interval training group was ~0.25 mm/MJ (p<0.01).  The fact that the

high intensity interval training group had a significantly greater change in the sum of six

skinfolds indicated that higher intensity exercise may play a larger role in fat loss than exercise at

a lower intensity and a longer duration.

As mentioned earlier, none of the subjects used in the study by Tremblay et al. (1994)

were overweight, essentially negating the fact that no weight loss occurred.  It remains unknown

to what extent weight loss would have occurred had the subjects been obese.  Also, the relative

intensity of the endurance training exercise program gradually increased, so it is unknown what

effect a program that remained at the same relative intensity would have had on energy

expenditure.

Overend, Paterson, and Cunningham (1992) used interval training intensities over 100%

VO2max for the interval training groups in their study.  Overend et al. assigned 29 (17 in the

final data) active young males (mean height: 177.2 ± 7.4 cm; mean weight: 74.6 ± 8.6 kg; mean

age: 25.1 ± 3.0 years) to three training groups.  In order to establish an exercise base, the groups

used identical exercise protocols for the first 2 weeks of the 10-week study.  After 6 weeks, all
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groups were retested in order to account for any changes in VO2max.  The exercise intensity

used in each of the three exercise protocols increased after 6 weeks.  The continuous training

group (CT) exercised at approximately 80% of VO2max.  The low-power interval training group

(LT) exercised at approximately 100% of VO2max.  The high-power interval training group

(HT) exercised at approximately 120% of VO2max.

The continuous training, low power interval training, and high power interval training

groups in the Overend et al. (1992) study had no significant differences in VO2max among

groups (CT: 3.22 ± 0.55 to 3.47 ± 0.33 L•min; LT: 3.49 ± 0.26 to 3.82 ± 0.44 L•min; HT: 3.15 ±

0.22 to 3.67 ± 0.35 L•min).  There was, however, a significant change in combined group mean

VO2max (3.30 to 3.66 L•min, p < 0.05).  More important to the present study, however, is the

significant decrease in the skinfold sums.  The combined-group mean skinfold sums decreased

from a pretest level of 39.6 ± 11.3 mm to a posttest level of 36.5 ± 8.4 mm (p < 0.05).  Although

there were no significant among group differences in skinfold sums, the significant decrease adds

to the evidence that both continuous and intermittent cardiovascular exercise facilitate fat loss.

As all subjects were active, it is unknown whether the use of obese subjects would have

produced weight loss to accompany the fat loss.

Gorostiaga, Walter, Foster, and Hickson (1991) found a significant change in the

VO2max of the interval training group from the pretest to the posttest whereas a significant

change was not found in the continuous training group.  Gorostiaga et al. assigned 12 subjects (3

males, 9 females; mean age: 27 ± 1.3 years) to a continuous training group (n = 6) and an

interval training group (n = 6).  Both groups exercised on a cycle ergometer for 30 minutes a day,

3 days a week for 8 weeks.  The continuous training (CT) group exercised at a constant workload

equivalent to approximately 50% of the subject’s VO2max.  The interval training (IT) group
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exercised at approximately 100% of VO2max for 30 seconds and then rested for 30 seconds.

After 8 weeks, no significant change was found in body mass (CT: 74.0 ± 9.5 kg to 74.3 ±9.6 kg;

IT: 75.2 ± 6.0 kg to 72.5 ± 6.3 kg).  No mention is made regarding body composition or

weight/height relationship, so it cannot be determined whether lack of significant weight loss

was due to the subjects being relatively lean.  More importantly, a significant increase was found

in the VO2max of the interval training group (36.6 ± 1.1 ml•kg-1•min-1 to 42.2 ± 1.7 ml•kg-

1•min-1, p < 0.05).  A slight increase in VO2max was also found with the continuous training

group (36.7 ± 1.6 ml•kg-1•min-1 to 39.4 ± 1.4 ml•kg-1•min-1); however, this change was not

significant.  The fact that a significant change in VO2max was found only with the interval

training group (although the between group difference was not significant) indicates the potential

for a difference in the physiological results stemming from interval training and those from

continuous training.

Using young (mean age 23 ± 1 years) male subjects, Tabata et al. (1996) found

significant increases in VO2max for both continuous training and interval training groups.  The

continuous training group exercised on a cycle ergometer at approximately 70% of VO2max for

60 minutes a day, 5 days a week for 6 weeks.  The VO2max of the continuous training group

increased from 52.5 ml•kg-1•min-1 to 57.5 ml•kg-1•min-1 (p < 0.01).  The interval training group

performed seven to eight sets at approximately 170% of VO2max until exhaustion 4 days per

week.  On the 5th day, the interval group exercised for 30 minutes at approximately 70% of

VO2max and then performed four exhaustive sets at approximately 170% VO2max.  The

VO2max of the interval training group increased from 48.0 ml•kg-1•min-1 to 55.0 ± 6 ml•kg-

1•min-1 (p < 0.01).  In addition to an increase in VO2max, the interval training group also



31

exhibited a 28% increase in anaerobic capacity (the maximal possible intensity at which work

can be performed).  The mean anaerobic capacity of the interval training group increased from

60 ml•kg-1•min-1 to 77.9 ml•kg-1•min-1 (p < 0.01).  Even with a higher exercise intensity for the

continuous training group than that used by Gorostiaga et al. (1991), Tabata et al. concluded that

high intensity interval training is a viable means of increasing VO2max.  Also, the significant

increase in the anaerobic threshold indicated the increased capacity of the subjects to perform at

a higher intensity.  Performing at a greater intensity would, in turn, increase an individual’s

energy expenditure for a given exercise duration.  However, it should be noted that the subject

sample was comprised of active physical education majors who exceeded the average VO2max

for their age group (ACSM, 1995).  The high intensity used with the interval training group may

not be suitable for many subjects, especially overweight individuals.

Many researchers found that training produced significant changes in either the

continuous training group or in the interval training group from pretest to posttest, but not

between group differences in the change in the measured variable.  Poole and Gaesser (1985)

found between group differences in ventilatory threshold.  Poole and Gaesser used three training

groups in their study.  All groups exercised on a cycle ergometer three times a week for 8 weeks.

The first group exercised for 55 minutes at approximately 50% of VO2max.  The second group

exercised for 35 minutes at approximately 70% of VO2max.  The third group performed 10 2-

minute intervals at approximately 105% of VO2max with a 2-minute rest between intervals.  All

groups experienced a significant increase in both lactate threshold (group 1: 1464 ± 93 ml/min to

2033 ± 135 ml/min; group 2: 1481 ±46.2 ml/min to 2065 ±53.4 ml/min; group 3: 1852 ± 49.4

ml/min to 2385 ±55.4 ml/min; p < 0.05) and ventilatory threshold (group 1: 1191 ± 67 ml/min to

1415 ±60 ml/min; group 2: 1418±147 ml/min to 1822 ± 111 ml/min; group
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3: 1528 ± 145 ml/min to 2227 ±155 ml/min; p < 0.05) from the baseline values.  Not only were

all values significantly different than the baseline, but the post-training increase in ventilatory

threshold for the interval training group was significantly greater than the post-training increase

in ventilatory threshold of the other two groups (p < 0.05).

Poole and Gaesser (1985) found a significant among group difference in the change in

ventilatory threshold, which is evidence that high intensity interval training may produce

significantly different physiological changes than low or moderate intensity continuous training.

A significant among group difference in ventilatory threshold might not correspond directly to a

loss in weight or fat mass.  However, an increase in ventilatory threshold will allow the subject

to work at a greater intensity, which would acutely increase RMR (Bielinski et al., 1985), which

increases TDEE, and therefore facilitates weight and fat loss (Keim et al., 1990; Racette et al.,

1995; Tremblay et al., 1994).

Sedlock, Fissinger, and Melby (1989) examined the effect of exercise intensity and

duration on magnitude and duration of EPOC.  Ten trained male triathletes (mean age 26.0 ± 6.3

years) performed each of three exercise protocols: one of high intensity (75% VO2max) and short

duration (HS), one of low intensity (50% VO2max) short duration (LS), and one of low intensity

long duration (LL).  The short duration exercise was sufficient to expend 300 kcal.  The long

duration exercise was sufficient to expend 600 kcal.  The HS, LS, and LL bouts lasted 19.9 ± 1.3

min, 29.6 ± 2.3 min, and 59.2 ± 4.5 min, respectively.  Each training duration was significantly

different from the other two (p < 0.05).  Following exercise, the duration and magnitude of

EPOC were measured.  The duration of EPOC was considered the time from the end of exercise

to oxygen consumption returning to baseline values.  The magnitude of EPOC was measured as

the caloric expenditure during this time period.  The duration of EPOC for both HS and LL was
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significantly greater than that of LS (HS: 33.3 ± 10.4 min, LL: 28.4 ± 14.1 min, LS: 19.8 ± 5.4

min; p < 0.05).  However, although the duration of EPOC for LL was significantly greater than

that of LS, no difference was found in the magnitude of the two low intensity groups (LL: 12.1 ±

6.6 kcal, LS: 14.3 ± 6.4 kcal) with the magnitude of HS (29.4 ± 8.4 kcal) being significantly

greater than both LL and LS (p < 0.05).  This finding indicates that exercise intensity effects both

the magnitude and duration of EPOC whereas exercise duration only effects the duration of

EPOC.

Broeder et al. (1991) also found that exercise intensity plays a greater role in the increase

in EPOC than does exercise duration.  Ten male subjects were equally divided into a lean group

and a borderline obese group.  All subjects participated in four exercise sessions.  In two of these

sessions, subjects walked at 30% of VO2max and in two sessions, subjects walked on an incline

at 60% of VO2max.  The duration of all exercise sessions was set to expend 720 kcal.  In one

session for each exercise intensity, subjects were given a post-exercise meal equal in caloric

value to the energy expended.  In the other two sessions, no replacement meal was given.  Excess

post-exercise oxygen consumption was then measured for three hours following the treatment

period.  In order to distinguish the effect of exercise on EPOC from that of dietary induced

thermogenesis, only the non-feeding trials will be discussed.  In both the lean and borderline

obese groups, the exercise at 60% of VO2max produced a significant change in oxygen uptake

over this time (lean: 0.238 ± 0.02 L•min to 0.274 ± 0.03 L•min; borderline obese: 0.229 ± 0.01

L•min to 0.256 ± 0.02 L•min; p < 0.01).  Despite the fact that the lower intensity exercise would

have caused duration to be much longer than in the session at 60% of VO2max, no such change

was found in the session at 30% of VO2max (lean: 0.239 ± 0.02 L•min to 0.252 ± 0.02 L•min;

borderline obese: 0.235 ± 0.01 L•min to 0.248 ± 0.01 L•min; NS).  This indicates that intensity
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rather than duration or total energy expenditure during exercise will have an effect on EPOC for

up to 3 hours post-exercise.

Maehlum, Grandmontagne, Newsholme, and Sejersted (1986) found that the increase in

EPOC may extend to 24 hours post-exercise.  Eight subjects (four male and four female)

exercised in 10 to 30 minute increments for a total of 90 minutes of exercise at 70% of VO2max.

When compared to a control period, oxygen consumption had significantly increased for the 12

hours following exercise (E: 211 ± 16 L/12 h; C: 185 ± 13 L/12h; p < 0.001).  This increase in

the 12 hours immediately post-exercise led to a significant increase in 24-hour oxygen

consumption as well (p < 0.05).  While this study makes no mention of energy expenditure, the

increase in EPOC over a 24-hour period indicates the possibility for an increase in RMR over

this time period

Exercise and Resting Energy Expenditure

Perhaps more important than the immediate effect of a high intensity exercise program is

the effect that a high intensity exercise program has on resting energy expenditure.  Through

previous studies conducted on young adult males, it appears that either a high exercise intensity

or a long exercise duration are needed in order to cause an acute effect on RMR.

Poehlman et al. (1989) tested the acute effect of exercise on resting metabolic rate using

six young (mean age 28.5 ± 3.5 years), untrained men.  Prior to testing, all subjects were

provided a similar diet.  Subjects exercised on a cycle for 90 minutes at ~50% of VO2max and

RMR was measured both 24 and 48 hours post-exercise.  No change was found in RMR

following exercise (pre: 1.17 ± 0.12 kcal•min-1; 24 h post: 1.16 ± 0.12 kcal•min-1; 48 h post:
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1.16 ± 0.11 kcal•min-1; NS).  This finding indicates that if exercise is to have an acute effect on

RMR, then the exercise will need to be either of greater intensity or greater duration.

Bielinski et al. (1985) used a steady state program of long duration to determine the effect

of the former on resting metabolic rate.  Ten conditioned male subjects (mean age: 21.8 ± 0.3

years) participated in the experiment, which lasted a period of 48 hours with energy expenditure

being measured at set points throughout the study.  During the first day, subjects did very little

physical activity and maintained a constant meal time and content.  During the second day,

subjects maintained the constant meal time and content from the first day, but they also

completed a 3-hour treadmill exercise.  The intensity of the exercise was approximately 51.9 ±

1.2% of the subjects’ predicted VO2max.  Resting metabolic rate was found to increase from

1.37 ± 0.05 kcal/min during the control period to 1.44 ± 0.06 kcal/min the morning following

exercise (p < 0.05), an increase of approximately 100 kcal/day.  This increase in RMR indicates

the mechanism of exercise to facilitate weight loss.  However, Bielinski et al. used a 3-hour

exercise protocol.  An exercise program of such a long duration has little practical relevance due

to the fact that few people would be willing to make such a time commitment.  Therefore, it is

necessary to find a program that can have results similar to those found by Bielinski et al., but

only in a shorter exercise duration.

Broeder, Burrhus, Svanevik, and Wilmore (1992b) found that exercise intensity plays a

role in creating an acute effect on RMR.  As part of a larger study, Broeder et al. assigned 15

male subjects (age 18-35) of varying fitness levels to an group performing progressive endurance

training 4 days per week for 12 weeks.  The progression was set so that each subject was

working at a minimum of 70% of VO2max for 40 minutes at the end of week 4.  By the end of

week 8, each subject was exercising between 70% and 85% of VO2max for 50 minutes.  The
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final 4 weeks of training also included fartlek intervals at ∆ 90% of VO2max for 2 to 5 minutes.

Fourteen hours following an exercise bout during the second stage of training (70-85% for 50

minutes), Broeder et al. (1992b) found that RMR increased significantly (5.24 kJ/min to 5.49

kJ/min; p < 0.05).  This finding indicates that exercise of a much more practical duration than

that used in the Bielinski et al. (1985) study can have an acute effect on RMR.

Unlike the Bielinksi et al. (1985) and the Broeder et al. (1992b) stuies, Treuth et al.

(1996) compared high and low intensity exercise and found a significant difference in resting

energy expenditure between high intensity and low intensity training groups.  In the study done

by Treuth et al., subjects spent three separate 24-hour sessions in a calorimeter.  Each group

served as its own control as the group that exercised at a high intensity for the first two sessions

exercised at a low intensity the third session while the group that exercised at a low intensity for

the first two sessions exercised at a high intensity the third session.  With the exception of the

exercise protocol, the activities for each group were identical: reading, watching television, and

sleeping.  The low intensity training group exercised on a cycle ergometer for 60 minutes at

approximately 50% of VO2max. The high intensity group completed 15 bouts of 2-minute

exercise at approximately 100% VO2max with a 2-minute resting recovery between bouts.  The

high intensity training group had significantly greater energy expenditure than the low intensity

training group at rest (HI: 4.18 ± 0.55 kJ/min; LI: 3.90 ± 0.52 kJ/min; p < 0.05), during total

exercise time (HI: 20.95 ± 3.41 kJ/min; LI: 17.09 ± 2.31 kJ/min; p < 0.001), and over a 24-hour

period (HI: 5.94 ± 0.58 kJ/min; LI: 5.48 ± 0.53 kJ/min; p < 0.01).  Because of the significant

difference in resting and total daily energy expenditure between the high intensity and low

intensity training groups, Trueth et al. concluded that exercising at a higher intensity allows for
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greater energy expenditure throughout the day.  The increase in daily and resting energy

expenditure in turn leads to an increased loss of fat mass if not total body mass.

Summary

Several studies exist dealing with the issue of exercise and weight loss.  There also exist

several studies dealing with the effects of continuous training vs. interval training on various

physiological markers.  However, those studies that deal with exercise and weight loss, even

when interval training was used, used either a low or moderate exercise intensity (Grediagin et

al., 1995; Keim et al., 1990; Kempen et al., 1995; Racette et al., 1995).  It is possible that using

an exercise training program that is close to (i.e. >90%) 100% of VO2max may produce different

findings than using a higher intensity of less than 90% of VO2max.  Even though between group

differences were found in other important training markers, no studies using an intensity near or

greater than 100% of VO2max (Gorostiaga et al., 1991; Overend et al., 1992; Poole & Gaesser,

1985; Tabata et al., 1996; Tremblay et al., 1994; Treuth et al., 1996) found a correlation between

high intensity interval training and weight loss.  However, none of these studies used subjects

that were obese or even moderately overweight.  No studies currently exist that use an exercise

intensity near VO2max to train either obese subjects or subjects with a mean age greater than 30.

The purpose of this study was to determine if an interval training intensity near VO2max

would produce greater weight and fat loss in pre-menopausal obese subjects than a low intensity

steady state training program.  High intensity exercise was found to increase fat-free mass

(Grediagin et al., 1995), which in turn influences resting metabolic rate (Broeder et al., 1992a;

Broeder et al., 1992b).  A single bout of high intensity exercise was also found to increase EPOC
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(Broeder et al., 1991; Sedlock et al., 1989) as well as total daily energy expenditure over a 24-

hour period more so than lower intensity exercise (Broeder et al., 1992b; Treuth et al., 1996).

The conclusion can be made that exercise will facilitate fat loss.  Since exercise assists in

the loss of fat mass, it can be concluded that exercise even without caloric restriction will

promote weight loss to some extent, but will promote fat mass loss to an even greater extent.

Perhaps more importantly, the majority of the weight loss will be fat mass rather than fat-free

mass.  There is also a possibility of exercise increasing fat-free mass, which will preserve or even

increase RMR during weight loss (Broeder et al., 1992a; Broeder et al. 1992b).  A change in

RMR, whether it is chronic due to an increase in fat-free mass or acute due to a high intensity

exercise bout, will increase TDEE (Bielinski et al., 1985; Broeder et al., 1992a; Broeder et al.

1992b; Treuth et al., 1996), which will promote weight loss.  In addition to an increase in TDEE,

high intensity exercise will also work to increase fat metabolism at rest because of the necessary

breakdown of fats in order to replenish glycogen stores (Coggan & Williams, 1995).
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CHAPTER 3

RESEARCH METHODOLOGY

The purpose of this study was to compare the effects of high intensity interval versus low

intensity steady state training on weight loss and body composition in obese pre-menopausal

women.  This chapter will discuss the (a) subjects, (b) instrumentation, (c) research protocol, and

(d) design and analyses that were used in comparing the effects of the two training methods.

Subjects

The primary criterion for subject selection was that all subjects were clinically obese pre-

menopausal women. Obesity in women was defined as having a body fat percentage greater than

or equal to 30% (McArdle, et al. 1996).  To avoid possible maturation due to the beginning of

menopause, all subjects were between 18 and 40 years old; subjects ranging from 40 to 45 years

of age were also allowed to participate if they had not reached menopause.  The use of pre-

menopausal women was to avoid any changes in RMR caused by lower estrogen levels.  All

subjects were weight stable, non-smokers, not pregnant, not lactating, and not taking any

medications that could inhibit metabolism.  Subjects did not have any medical conditions that

were contraindicated to an exercise program or that could potentially hinder the effects of the

exercise treatment.

No subjects were allowed to make a conscious change in eating habits.  Because the

purpose of the study was to determine the effects of high intensity interval and low intensity

steady state training protocols on weight loss, any change in energy consumption would have

had an effect on the data.  Subjects were required to keep a 3-day food record on random,
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consecutive days prior to beginning the treatment program and at the end of the treatment

program so that any changes could be noted.

Subject selection was voluntary and then limited only to those meeting the above criteria.

Based on the results of a power analysis (Glantz, 1992), the sample size was calculated to be 15-

20 subjects per group for a total of 30-40 subjects.  Thirty-two subjects were recruited for the

study, with 17 subjects leaving the study for various reasons.  The remaining 15 subjects were

randomly drawn into high intensity interval training and low intensity steady state training

groups.

Prior to the study, all subjects were asked to sign an informed consent form (Appendix A)

which was approved by the East Tennessee State University Institutional Review Board

(Appendix B).  The informed consent notified subjects of all potential risks involved, including

the possibility of musculoskeletal injury and myocardial infarction.  Subjects were also informed

that they would receive compensation for standard emergency care resulting from any injury

incurred as a result of the study.  Subjects were told that they would be free to leave the study at

any time and that their personal records would be kept confidential.

Instrumentation

As this study dealt with the effect of high intensity interval and low intensity steady state

training protocols on weight and body composition, there were several measures taken.  A

VO2max test prior to the study was conducted in order to determine appropriate absolute

intensity levels for the subjects.  The dependent variables, weight and body composition, were

measured at both the beginning and end of the study.  Resting metabolic rate was also measured
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at the beginning and the end of the study as well as a morning following an acute bout of

exercise.

To maintain a consistent research protocol, a treadmill was used to test VO2max.  Each

subject was tested for VO2max using a Quinton Q55 Treadmill (Quinton Instruments; Seattle,

WA), a Q4000 EKG montitor with a five-lead EKG (QI; Seattle, WA) and a SensorMedics 2900

metabolic cart (SensorMedics Corp.; Anaheim, CA).  To measure VO2max, the treadmill

protocol designed by the ETSU Human Performance Laboratory for this study was used.  Each

subject began walking at 1.2 mph at a 0% grade for 2 minutes.  During the second stage, speed

increased to 3.5 mph with a 0% grade for 2 minutes.  At this point, the speed remained constant

and the grade increased by 1% for the following 2 stages and by 2% after that.  With the

exception of the first 2 stages, all stages were 1 minute in duration.  The test was terminated

when the subject went to volitional fatigue.  VO2max was defined as meeting at least two of the

following three criteria:  reaching age predicted maximum heart rate, a respiratory exchange ratio

(RER) greater than 1.1, and a plateau in VO2 between successive stages.

Body composition was measured through Dual Energy X-ray Absorptiometry (DEXA)

using a Lunar™ QDR system according to the specifications of Lohman (1996).  Transverse

scans of the subject’s whole body were made in the anteroposterior position.  Scans were made

in 0.6 to 1.0 cm intervals over the area being scanned.  Standard error for this method of

measuring body composition ranges from 2.5% to 3.5%.  Body weight was measured on a

Portotronic  (Cape Coral, FL) scale accurate to 100 grams.  Each body composition and weight

measurement was made by a single rater throughout the study in order to control for inter-tester

error.
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Menstruation has been found to have an effect on RMR (Webb, 1986); therefore, the

RMR test was scheduled around each subject’s menstrual period.  Resting metabolic rate was

measured as described by Broeder et al. (1992a, 1992b).  Prior to testing, all subjects had a

restful night’s sleep (equal to her normal volitional hours of sleep), did not eat or consume

liquids other than water in the 12 hours preceding the test, and abstained from caffeine for 24

hours prior to the test.  Subjects were asked not to perform exercise for at least 48 hours prior to

the test.  Subjects were transported by car to the testing center and rested in a semirecumbent

position for 30 minutes prior to the test.  An airtight SensorMedics (CA) ventilatory hood was

positioned on the subject.  Ventilation, VO2, and respiratory exchange ratio (RER) were

measured for 30 minutes.  The subject remained inactive and the noise and light level in the

room were diminished.  Data were collected using a SensorMedics 2900 metabolic cart, which

was calibrated with standard calibration gases at 26% O2, 0% CO2 and 16% O2, 4% CO2.

The RMR test took place in the morning after an overnight fast.  VO2max and DEXA

tests took place in the afternoon following a minimum 4-hour fast.  Subjects were given

appropriate instructions concerning food intake and activity prior to all tests. The scheduling of

testing was set so that no test was affected by the previous test.

Research Protocol

On completion of pretest period, subjects were randomized into either a high intensity

interval training group or a low intensity steady state training group.  Training consisted of a 5-

minute warm-up period at ~30% of VO2max for both groups.  The high intensity interval training

group alternated 2-minute intervals of 95% VO2max with 3-minute intervals at a speed of 1.2

mph with a 0% grade, which equaled ~30% of each subject's VO2max.  The timings of the
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intervals caused the interval training group to average ~55% of VO2max over the entire duration

of the exercise session.  In the low intensity steady state group, after the 5-minute warm-up, the

intensity was increased to 50% of VO2max for the duration of the exercise.  All subjects

exercised three times a week for 8 weeks.  Caloric expenditure during exercise was set at 300

kcal for both groups, creating the necessity of a variation in exercise times among individual

subjects.  Each person’s metabolic workload was verified at the beginning of the study and again

after 4 weeks using the SensorMedics metabolic cart system.  Unless a lower speed was

necessary due to lower fitness levels, speed was set at 3.5 mph and intensity was altered by

increasing the grade as needed.  At no point did the treadmill speed exceed 3.5 mph.  Duration of

exercise was determined by entering kcal/min data based on liters of O2 and non-protein RER

into a Microsoft Excel program at 20-second intervals.  Exercise was halted when the sum total

of the data equaled 300 kcal.  Due to varying weight and fitness levels of subjects, duration of

exercise ranged from 37 minutes to 65 minutes.  The average duration for the high intensity

interval training and the low intensity steady state training groups was 51.0 ± 9.1 min and 51.1 ±

8.9 min, respectively (p = 0.97; Table 1, Appendix C).  Many of the subjects had very little or no

prior experience walking on a treadmill and, in the interests of subject comfort, were allowed to

rest their hands on the treadmill for balance.  Those subjects who placed their hands on the

treadmill were requested to do so for all tests and exercise sessions.  Doing this in every session

prevented discrepancies in session to session exercise intensity and caloric expenditure as

determined by the metabolic assessment trial.

At the midpoint of the study, VO2max was again measured in order to determine if the

absolute intensity needed to be altered.  At this time, each subject was also tested at her absolute

intensity to determine if the new estimation of workload and duration were equal to the desired
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relative intensity and duration.  Treadmill speed and grade were adjusted as needed.  Each

subject also underwent a second RMR test that measured RMR following a day of exercise in

order to determine acute effects of each respective training period on RMR. This acute RMR test

was conducted within the first 2 weeks of training, on average ~17 hours after the end of the

exercise session.  Most subjects completed this test within two weeks, with two subjects

completing it during the third week due to scheduling difficulties.  At the end of the study, all

measurements were repeated with the exception of the acute RMR test.

Design and Analyses

Since the subjects in this study were randomized into two experimental groups, this study

was a pretest-posttest randomized-group design.  Each of the two groups received the same pre

and posttest.  A student’s t-test was used to determine if between group differences existed prior

to testing.  In order to control for any potential between group differences prior to testing, an

ANOVA model was used to determine if significant between group differences were present.  If

there were significant differences, an ANCOVA model was used and adjusted means were

presented.  A repeated measures ANOVA was used to determine pre to post differences for the

two groups.  All significance was accepted at p < 0.05.
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CHAPTER 4

RESULTS AND DISCUSSION

With the growing rate of obesity in America, it is necessary to find a means to help

reverse the trend towards weight gain.  For this to be done successfully, energy balance must be

manipulated so that more energy is expended than consumed.  The only way that this can be a

lasting change is for the method by which energy balance is altered to be a permanent lifestyle

change.  Many means of weight loss are designed to serve as a temporary solution and, therefore,

once the program ceases and the individual returns to his or her previous lifestyle, the weight is

regained.

The purpose of this study was to compare the effects of high intensity interval training

and low intensity steady state training on resting energy expenditure, weight loss, and body

composition on non-dieting pre-menopausal obese women.  Previous research in this area has

used submaximal protocols (~80% of VO2max) for the higher intensity training and have found

very little change in body composition (Grediagin et al., 1995).  When using an intensity near or

above VO2max, changes were found in resting energy expenditure, but not body composition

(Tremblay et al., 1994; Treuth et al., 1996).  However, the reason that there were no changes in

body composition could be due to the use of lean populations in these studies.  The present study

is the first to use a near or greater than pre-treatment maximal exercise intensity (~95% of

VO2max) with an obese population. The three research hypotheses of this study were 1) high

intensity interval training would produce a greater increase in resting metabolic rate (RMR) 24

hours following an exercise session than low intensity steady state training; 2) high intensity

interval training would produce a greater loss of total body weight than low intensity steady state
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training; and 3) high intensity interval training would produce a greater loss of fat mass than low

intensity steady state training.  Resting metabolic rate comprises up to 75% of a person's total

daily energy expenditure (TDEE) (Wilmore & Costill, 1994).  As such, it is likely that an

occurrence of the first hypothesis would lead to the occurrence of the next two hypotheses.

Subjects

Thirty-two female subjects, ages 18 to 45, were randomly assigned to either a high

intensity interval training group or a low intensity steady state training group.  All subjects had a

body fat percentage greater than or equal to 30%.  Due to varying reasons, primarily either lack

of time or change of interest, 17 subjects dropped out during either the testing period (n=11) or

during the first week of training (n=6).  Two more subjects, one from each group, dropped out at

the midpoint of the training period due to lack of time.  Of the 15 remaining subjects, 7 were

randomized to the high intensity interval training group and 8 were randomized to the low

intensity steady state training group.  Fourteen subjects were Caucasian; one was African-

American.  Six subjects took part in exercise or sports programs prior to participation in the

study and all remaining subjects had active jobs; therefore, although the subject population for

this study was obese, it was not sedentary.  Subject pre-treatment physical characteristics are

presented in Table 2 (Appendix C).  After performing a t-test on all dependent and independent

variables, no significant pre-treatment differences in any of the physical, metabolic, or dietary

characteristics were found between the two groups.
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Maximal Oxygen Consumption

Although none of the original hypotheses dealt with maximal oxygen consumption, one

finding of this study was that the high intensity interval training group experienced a significant

increase in VO2max whereas the low intensity steady state group had no change.  A significant

increase in VO2max, determined by the meeting of two out of three criteria—plateau in VO2,

RER greater than 1.1, and/or age predicted maximum heart rate—was found in the high intensity

interval training group (24.6 ± 4.1 ml•kg-1•min-1 to 28.2 ± 4.7 ml•kg-1•min-1; p < 0.01; Fig. 1,

Appendix D).  No such change was found in the low intensity steady state training group (27.57

± 3.976 ml•kg-1•min-1 to 26.72 ± 4.189 ml•kg-1•min-1; NS; Fig. 1).  These differences constitute

a +14.8% change in VO2max for the high intensity interval training group and no change in

VO2max for the low intensity steady state training group.  This difference in change between

groups was significant (p=0.001; Fig. 2, Appendix D).

The natural assumption in finding a change in relative VO2max in addition to a change in

body weight is that the change in weight, at least in part, caused the change in VO2max.

However, a 12.2% increase was found in the absolute VO2max of the high intensity interval

training group whereas no change occurred in the low intensity steady state group (IT: 2.25 ±

0.30 L•min to 2.52 ± 0.36 L•min; p < 0.01; ST: 2.48 ± 0.63 L•min to 2.44 ± 0.59 L•min; NS;

Fig. 3, Appendix D).

The data in this study indicate that an exercise intensity of greater than 50% of VO2max

is needed to increase maximal oxygen consumption in obese pre-menopausal women.  These

findings are in conflict with other studies that also used an exercise intensity of 50% of VO2max

(Gorostiaga et al., 1991; Grediagin et al., 1995).  Gorostiaga et al. found a 15% increase in

VO2max (36.3 ± 1.1 ml/kg/min to 42.2 ± 1.7 ml/kg/min; p < 0.05) with high intensity interval
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training (100% VO2max); however, they also found a 7% increase in VO2max (36.7 ± 1.6 ml•kg-

1•min-1 to 39.4 ± 1.4 ml•kg-1•min-1; NS) with low intensity steady state training (50% VO2max).

Grediagin et al. (1995) found no significant change in VO2max for either a high intensity group

(80%) or a low intensity group (50%).  However, the pattern found was similar to that found by

Gorostiaga et al..  The 80% and the 50% intensity group sexhibited an 11.4% increase and a

13.4% increase in VO2max, respectively.

While neither Gorostiaga et al. (1991) nor Grediagin et al. (1995) found a significant

change in VO2max for exercise training at 50% of VO2max, both studies show a pattern in this

variable not exhibited by the present study, which found essentially no change (3.1% decrease)

in VO2max with training at 50% of VO2max.  There are some possible explanations for this

difference. Gorostiaga et al. used a mixed gender, non-overweight population with a mean age of

27 ± 1.3 years.  Therefore, gender, weight, and age all could have been factors in the difference

in findings. Grediagin et al. used a moderately overfat population; however, both studies used

subjects who were sedentary.  Three of the subjects in the present study played competitive

amateur tennis several times a week.  Three other subjects also took part in walking or jogging

programs prior to participation in the study and, in order to prevent a change in activity other

than the treatment from affecting data, were encouraged to continue their programs.  All other

subjects had jobs that required that they be active.  The population in the present study led active

lifestyles, even though many had not been exercising prior to the study.  The fact that this was

not a sedentary population could indicate that a workload of 50% of VO2max is not a great

enough intensity to improve VO2max in a non-sedentary, albeit untrained, population.
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Weight/Body Composition

There were no significant changes in either group for body weight, body mass index

(BMI), or anthropometric measurements of the waist and hip after the treatment period (Table 3,

Appendix C).  There were also no between group differences in the percent changes of these

measurements.  However, this was not the case regarding measures of body composition. Body

fat percentage was measured using DEXA. Body fat percentage for the high intensity interval

training group decreased from 45.5 ± 7.8% to 43.5 ± 6.9% (p=0.07).  While this is not

significant, it does show a trend towards significance that could possibly be found with a larger

sample size, a longer treatment period, or an increase in training volume.  Conversely, body fat

percentage for the low intensity steady state group showed no change (42.4 ± 5.2% to 42.9 ±

4.6%; NS).  Even though the change in body fat for each group was not significant compared to

the pretest measure, the degree of change between groups was significant.  The high intensity

interval training group exhibited a -4.4% change in body fat whereas the low intensity steady

state group exhibited a +1.2% change in body fat (p < 0.05; Fig. 4, Appendix D).

The reason for this change may be attributed to the significant decrease in fat weight

found in the high intensity interval training group (44.1 ± 17.4 kg to 41.8 ± 17.3 kg; p < 0.01).

No significant change was observed in the fat weight of the low intensity steady state training

group (39.362 ± 14.145 kg to 40.117 ± 13.917 kg; NS).  Furthermore, a comparison of the

change between groups found a -5.3% change in fat weight of the high intensity interval training

group whereas the low intensity steady state group had a +1.9% increase, creating a significant

difference in percent change between groups (p < 0.01; Fig. 5, Appendix D).  No significant

differences were found in either the change in fat-free weight (IT: 49.9 ± 8.4 kg to 51.0 ± 9.9 kg,
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NS; ST: 51.5 ± 8.8 kg to 51.5 ± 8.6, NS) or in percent change of fat-free weight between groups

(IT: +2.2%, ST: - 0.1%, NS).

To determine if changes in body composition were the result of the treatment or a

conscious dietary change on the part of the subjects, a 3-day dietary recall was given to the

subjects before, mid-way through, and after the study.  Only 11 of 15 subjects (6 IT, 5 ST)

returned all dietary recalls.  Of these subjects, no significant changes were found in the subjects'

diets over the course of the study (Table 4, Appendix C).

Although the change in total body weight was not significant, fat weight decreased

significantly in the high intensity interval training group.  In contrast, no change was found in

fat-free weight for the high intensity interval training group.  This preservation of fat-free weight

is possibly enough to lead to the lack of a significant change in total body weight.  Broeder et al.

(1992b), when training subjects for 12 weeks, found a significant decrease in body fat with

endurance training (18.5 ± 1.9 to 17.0 ± 1.5%).   Like the present study, Broeder et al. found no

change in total body weight, but this was attributed to a preservation of fat-free weight and a

decrease only in fat weight (14.6 ± 2.0 kg to 13.2 ± 1.7 kg).

In a study similar to the current study, Grediagin et al. (1995) found a significant

decrease in the total body weight with interval training.  Although such a change did not occur in

the present study, Grediagin et al. used a 12-week training period with a frequency of four times

per week, for a total of 48 sessions.  The present study used an 8-week training period with a

frequency of three times per week, for a total of 24 sessions, or one-half of the number used by

Grediagin et al.  It is possible, based on the directional body composition changes observed in

this study, that a treatment duration and exercise frequency similar to that used by Grediagin et

al. may have produced similar results.
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Despite significant weight loss, Grediagin et al. (1995) did not find a significant change

in body composition.  Grediagin et al. concluded that because the two groups expended the same

number of calories during exercise, that fat loss was a function of energy expenditure, not

intensity.  In a sense, this conclusion may have been correct.  However, what was not taken into

consideration is that a higher exercise intensity may lead to greater post exercise energy

expenditure.  For their high intensity training group, Grediagin et al. used an intensity of ~80%.

However, studies in which a maximal or supramaximal exercise intensity was used found

significant decreases in skinfold sums (Overend et al., 1992; Tremblay et al., 1994) even when

the population used was athletic rather than overweight.  Prior to the current study, no study had

been completed in which an obese population exercised at a near maximal intensity.  The

significant difference in the percent change of body fat percentage indicates that the high

intensity interval training group was able to burn fat at a greater rate than the low intensity steady

state group, despite the fact that each group had the same caloric expenditure during exercise.

Grediagin et al. concluded that fat loss was a function of energy expenditure, not exercise

intensity; however it is likely that when exercise intensity is increased to near maximal levels,

that post exercise energy expenditure will be greater than it would be with a lower intensity,

therefore leading to greater fat loss.

Resting Metabolic Rate

There were no changes from pretest to posttest in RMR, resting VO2, resting VO2/kg total

body weight, VO2/kg fat free weight, or in resting respiratory exchange ratio (RER) (Table 5,

Appendix C).  However, changes were noted in most of these markers in the acute RMR test

conducted within 24 hours of a bout of high intensity interval training.  In the high intensity
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interval training group, RMR increased 4.4% from 1688 ± 373 kcal/day in the pretest to 1762 ±

376 when measured in the morning after subjects' training sessions (p = 0.05).  Such a change

was not found for pre training RMR to post training RMR, both of which were tested a minimum

of 48 hours after a previous bout of exercise.  Significance was also found when measuring

resting VO2/kg of body weight (2.63 ± 0.34 ml•kg-1•min-1 to 2.74 ± 0.33 ml•kg-1•min-1; p <

0.05).  Although significance was not found, a trend existed in the change for both resting

absolute VO2 (243 ± 54 ml•min-1 to 253 ± 53 ml•min-1; p=0.07) and resting VO2 adjusted for fat

free weight (4.9 ± 0.6 ml•kg-1FFW•min-1 to 5.1 ± 0.6 ml•kg-1FFW•min-1; p=0.06).  No changes

were found in these markers for the steady state group, nor was a change found in RER for the

acute RMR test in either group.  There was also no significant difference between groups in the

percent change of acute RMR data.  It should be noted that this change occurred during the first

few weeks of exercise.  A possibility exists that the increase in RMR due to exercise seen

initially may have disappeared as the 8 weeks progressed.

Other studies found a similar effect of exercise on acute RMR as did the present study

(Table 6, Appendix C).  Poehlman et al. (1989) exercised six untrained (mean VO2max: 50.1 ±

5.0 ml•kg-1•min-1), nonobese (mean body fat percentage: 12.9 ± 3.9%) male subjects (mean age:

28.5 ± 3.5 years) on a cycle ergometer for 90 minutes at 50% of VO2max.  No change was found

in resting metabolic rate either 24 or 48 hours post-exercise (pre: 1.17 ± 0.12 kcal/min; 24 h:

1.16 ± 0.12 kcal/min; 48 h: 1.16 ± 0.11 kcal/min; NS).  Poehlman et al. concluded from this

finding that exercise does not have an acute effect on RMR.  However, like the present study,

what the findings of Poehlman et al. indicate is that if exercise is to have an acute effect on

RMR, an intensity greater than 50% may be needed.
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Bielinski et al. (1985) determined that 50% of VO2max could have an acute effect on

RMR; however, they used an exercise duration of 3 hours.  Ten athletic (mean VO2max: 62.5 ±

2.2 ml•kg-1•min-1), lean  (mean percent body fat: 11.9 ± 0.6%) male (mean age 21.8 ± 0.3)

subjects took part in a single bout of low intensity, high duration exercise.  Resting metabolic

rate was tested 18 hours after exercise and a 4.7% increase was found over the pre-exercise test

(pre: 1.37 ± 0.05 kcal/min; acute: 1.44 ± 0.06 kcal/min; p < 0.05).  This finding indicates that a

low exercise intensity can have an acute effect on RMR, provided a long duration is used.

However, this data has little practical implication due to the long duration.

Broeder et al. (1992b) found that exercise has an acute effect on RMR when a high

intensity but a more moderate duration is used.  Fifteen males, age 18-35, of average body

composition (mean body fat percentage: 17.0 ± 1.5%) and varying fitness levels (mean VO2max:

55.2 ± 2.2 ml•kg-1•min-1) participated in 8 weeks of progressive endurance training prior to

being tested for RMR.  Resting metabolic rate was tested 14 hours following a 50-minute bout of

exercise with intensity varying from 70 to 85% of VO2max.  Following exercise, an acute 4.8%

increase was found in RMR (pre: 5.236 kJ/min; acute: 5.487 kJ/min; p < 0.05).  Whereas

Bielinski et al. (1985) demonstrated the acute effect of exercise duration on RMR, Broeder et al.

demonstrated the effect of exercise intensity on RMR, a finding that is similar to that of the

present study.

The present study, Bielinski et al. (1985), and Broeder et al. (1992b), respectively, found

a 4.4%, a 4.7%, and 4.8% acute increase in RMR following a bout of exercise.  What separates

the present study from the other two is the population that was used.  The present study used

obese pre-menopausal women whereas the other two used lean, moderately trained males.  The

fact that the present study found a similar finding in a population so distinct from other studies
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indicates that the effect of high intensity or long duration exercise on RMR my have no relation

to body fat percentage or training status.

One of the design flaws of the present study was that the acute RMR test occurred within

two weeks of subjects beginning the training protocol.  There was some speculation as whether

the acute increase in RMR following high intensity interval training would have been found at

the end of the study.  However, Broeder et al. (1992b) tested acute RMR after 8 weeks of

training.  Additionally, both Broeder et al. and Bielinski et al. (1985) used a population that had

much more prior training that of the current study.  In light of these facts, it appears that there

likely would have been no difference in the data had the acute RMR test occurred at the end of

the training period.

There is a possibility, however, that high intensity exercise may not act alone in having

an acute effect on RMR.  Bullough, Gillette, Harris, and Melby (1995) studied the interaction

between diet and exercise on RMR by using four different diet/exercise combinations with a

single group of subjects.  The four combinations used were high energy flux (90 minutes of

exercise at 75% of VO2max with caloric replacement), low energy flux (no change in exercise or

diet), negative energy balance (90 minutes of exercise at 75% of VO2max without caloric

replacement), and positive energy balance (no exercise, but caloric intake equal to that taken in

during exercise).  In light of the aforementioned studies, one would expect that if no interaction

existed between diet and exercise in producing an acute increase in RMR, that RMR would

increase in both high energy flux and negative energy balance.  However, that was not the case.

A significant increase was found in acute RMR in high energy flux, but acute RMR was the

same in negative energy balance as it was in low energy flux and positive energy balance.  This
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finding indicates that not necessarily high intensity exercise alone, but high intensity exercise

combined with caloric replacement to produce a high energy flux leads to an increase in RMR.

While a controlled program such as that used by Bullough et al. (1995) was not used by

Broeder et al. (1992b) or Bielinski et al. (1985), both produced a high energy flux by replacing

much of the calories expended during exercise.  In the present study, subjects were allowed to eat

ad libitum following exercise so it could not be determined whether the high intensity interval

training group was in a state of high energy flux.  However, when acute RMR was compared to

self-reported energy intake prior to the study (Table 7, Appendix C; Fig. 6, Appendix D), the

high intensity interval training group was in a state of neutral energy balance (pre kcal in: 1717 ±

520 kcal/day; acute RMR: 1705 ± 377 kcal/day; similar at p < 0.05) whereas the low intensity

steady state training group was in a state of negative energy balance (pre kcal in: 1479 ± 513

kcal/day; acute RMR: 1957 ± 377 kcal/day; NS).  It should be noted that one member of the high

intensity interval training group and three members of the low intensity steady state training

group did not return their pre-training dietary recalls.  Although the negative energy balance of

the low intensity steady state training group is not significant (p = 0.14), the low P-value and

high standard deviation indicate that significance may have been found had all subjects

completed the dietary recall.  Although not officially controlled, this data indicate that the high

intensity interval training group was in an energy flux great enough to lead to a change in RMR.

Research Hypotheses

The three research hypotheses for this study were 1) high intensity interval training

would produce a greater increase in RMR 24 hours following an exercise session than low

intensity steady state training; 2) high intensity interval training would produce a greater loss of
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total body weight than low intensity steady state training; and 3) high intensity interval training

would produce a greater loss of fat mass than low intensity steady state training.  This study

found a significant increase in RMR within 24 hours of a high intensity interval exercise session

while no such increase was found in the steady state group.  Therefore, the research hypothesis

that high intensity exercise produces a greater increase in acute RMR is not rejected when

evaluating the first two weeks of an exercise program.  The fact that other studies (Bielinski et

al., 1985; Broeder et al., 1992b) found a similar effect after training may indicate that a similar

effect may also have occurred at the end of the training period.  There was no significant change

in total body weight for either the high intensity interval training group or the low intensity

steady state training group.  Therefore, the hypothesis that high intensity exercise produces a

greater loss of body weight than low intensity steady state training is rejected.  However, it was

found that high intensity interval training produced a greater amount of fat loss and decrease in

body fat percentage, than low intensity steady state training.  The hypothesis that high intensity

interval training leads to a greater loss of fat mass than low intensity steady state training is

therefore not rejected.

Although both caloric expenditure during exercise and average exercise intensity were

identical for both groups, caloric expenditure due to exercise was greater with high intensity

interval training because of the increase it caused in acute RMR.  While the increase in acute

RMR was merely 74 kcal/day, this would equate to 222 kcal/week or 1776 kcal over an 8-week

period, assuming that the acute RMR would not change with training status.  When added to the

7200 kcal expended during the exercise sessions, this equals 8976 kcal, the equivalent of 1.2 kg

of fat.  The high intensity interval training group lost ~2.3 kg of fat, so it is possible that the

additional fat loss could have come from an increased RMR past 24 hours.  There is also a
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possibility of other factors that may have led to the remainder of the fat loss.  The six subjects in

the high intensity interval training group who returned the dietary recall at both the beginning

and end of the training period had a 238 kcal/day decrease in caloric intake from pre to post

(1717 ± 520 kcal/day to 1479 ± 480 kcal/day; NS).  Although this is not statistically significant

due to large standard deviations, this difference could have great practical implications if it were

constant throughout the training period.  However, it is also possible that any changes were

unique only to the three random, consecutive days measured by the dietary recalls and did not

take place throughout the study.

Other responses may also have been effected by high intensity interval training and are

potential topics for future research.  Many researchers have found a decrease in dietary induced

thermogenesis (DIT), indicative of greater glucose uptake as glycogen, in highly trained

individuals (LeBlanc, Mercier, & Samson, 1984; Poehlman, Melby, & Badylak, 1988;

Poehlman, Melby, Badylak, & Calles, 1989).  While no difference in DIT has been found

between untrained and moderately trained individuals, there is no data as to whether DIT

decreases as fitness levels increase, which occurred in the high intensity interval training group.

Circulating leptin has been found to play a large role in RMR and substrate utilization in women

(Toth, Stites, & Poehlman, 1999), so the effect of high intensity interval training on leptin

circulation would need to be examined in the future.  Other hormones such as insulin and growth

hormone, both of which effect fat oxidation could be effected by high intensity interval training

and would need to be studied in further research.
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CHAPTER 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

With a growing rate of obesity in the United States, it is necessary to find a way to help

alleviate the problem.  The typical way that this is done is to alter the energy balance or substrate

partitioning of those prone to becoming overweight.  This can be done by either decreasing

caloric intake or increasing caloric expenditure.  A person's caloric intake can be reduced by

controlling his or her diet.  Caloric expenditure is generally altered through exercise or

increasing one’s daily physical activity, i.e. yard-work.  Due to hormonal differences that make it

more difficult for women to lose weight than men, it is necessary to find a modality that will

greatly enhance weight loss in women.  The purpose of this study was to determine the role of

exercise intensity on total daily energy expenditure and weight/fat loss in women.  It was

hypothesized that 1) high intensity interval training would produce a greater loss of total body

weight than low intensity steady state training; 2) high intensity interval training would produce

a greater loss of fat mass than low intensity steady state training; and 3) high intensity interval

training would produce a greater increase in resting metabolic rate (RMR) 24 hours following an

exercise session than low intensity steady state training.

To test these hypothesis, after subject drop-out was accounted for, 15 female subjects,

ages 18 to 45, completed an 8-week training program.  Seven subjects were randomized into a

high intensity training group that exercised at ~95% of VO2max for 2 minutes alternating with 3

minutes at ~30% of VO2max (an average of ~55 of VO2max).  Eight subjects were randomized

into a low intensity steady state training group that exercised at ~50% of VO2max for the
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duration of the exercise session.  The duration of exercise varied so that each subject would burn

300 kcal per exercise session regardless of the treatment group.

Both before and after the training period, subjects were tested for body weight, body

composition, VO2max, and resting metabolic rate (RMR).  Body composition was tested using

hydrostatic weighing, BIA, and DEXA.  Due to its multi-component model, the body

composition measure used in the final analysis was DEXA.  VO2max was tested midway through

the treatment in order to adjust the subjects' workloads if necessary.  Resting metabolic rate was

tested within 24 hours post exercise during the first 2 weeks of exercise to determine the acute

affects of exercise on RMR.

A trend towards significance was found in the reduction of body fat percentage of the

high intensity interval training group.  While this change was not significant, it is likely that

significance would have been found if the study was longer in duration.  A significant decrease

was found, however, in the fat weight of the high intensity interval training group.  Not only

were no such differences found in the low intensity steady state group, but also there was a

significant difference between groups for the change in both body fat percentage and fat weight.

This difference indicates the enhanced capability of high intensity interval training as opposed to

low intensity steady state training to promote fat loss.

No changes were found in RMR from pretest to posttest for either group.  However, there

were significant increases in RMR and in resting VO2/kg taken within 24 hours of a high

intensity interval training session within the first 2 weeks of exercise.  No such change was

found in the low intensity steady state group.  Although there was no between group difference

in the magnitude of change in acute RMR, it is possible that this change in acute RMR may

explain a portion of the difference in fat loss between the two groups.  This change in RMR 24
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hours after high intensity interval training indicates the need for adequate periods of high

intensity exercise to be conducted regularly to keep RMR elevated.  The lack of pre- to posttest

differences shows that this is only a temporary effect.

High intensity interval training also produced a significant increase in VO2max whereas

the low intensity steady state training did not.  Furthermore, the percent change in VO2max

between the groups was also significantly different.  An increased VO2max plays a great role in

weight loss in that with an increase in VO2max, a person will be able to expend more calories for

a given relative intensity.  In the current study, because adjustments in workload in duration were

made in relation to an increase in VO2max, exercise intensity was the main exercise related

metabolic factor distinguishing the two groups.

Conclusions

No significant change was found in body weight for either group.  Therefore, the

hypothesis that high intensity interval training would produce greater loss of total body weight

than low intensity steady state training is rejected.  This finding could be due to the lack of

caloric restriction involved in the treatment.  The fact that no weight change occurred adds to the

general evidence that a more frequent exercise program, caloric restriction, or both are needed to

lose a significant amount of weight.

Although a significant amount of weight loss did not occur, a loss of fat did occur in the

high intensity interval training group, leading to acceptance of the hypothesis that high intensity

interval training will produce a greater loss of fat mass than low intensity steady state training.  A

trend for a reduction in body fat percentage as well significance in reduction of fat weight

occurred in the high intensity interval training group.  These changes did not occur in the low
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intensity steady state training group.  Moreover, significance was found in the difference in the

magnitude of the change between groups for both body fat percentage and fat weight.  The

reason for the significance in change is because the low intensity steady state training group had

a slight gain in fat weight and body fat percentage.  These findings indicate that high intensity

interval training produces a greater amount of fat loss than low intensity steady state training.

Although no significance was found in an increase in fat-free mass in the high intensity interval

training group, the fact that fat loss occurred while weight loss did not indicates that the high

intensity interval training group increased muscle mass to the point where weight loss would not

occur.  The difference in change in body composition between groups contradicts the conclusion

of Grediagin et al. (1995) that weight and fat loss is a function of caloric cost of exercise.  If that

is the case, then no difference at all should be found in body composition between the two

groups.  However, even with the caloric cost of exercise held constant, a difference was found

between the two groups.  For a difference to occur between groups, it is necessary for exercise to

produce a change that would facilitate weight loss.  Possible candidates for the cause of this

change include an increase in RMR within 24 hours of exercise, at least in the initial stages of

training, as well as possible post-exercise changes in glycogen storage, substrate partitioning,

and anabolic hormone stimulation.

Even though both training groups exercised at an average intensity of 50% of VO2max,

high intensity interval training produced a significant acute increase in RMR 24 hours following

an exercise session.  This cannot be said of the low intensity steady state training group.

Therefore, the hypothesis that high intensity interval training will produce a greater increase in

resting metabolic rate (RMR) 24 hours following an exercise session than low intensity steady

state training is accepted.  These findings indicate that a high intensity interval training program
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on a regular basis will promote a continual increase in energy expenditure greater than low

intensity steady state training will, at least in the initial stages of training.  However, because

subjects engaged in little or no cardiovascular exercise prior to the treatment, it is possible that

this change only occurs as an early training adaptation and is not present in trained individuals.

The absence of a change from pretest to posttest indicates that while the change produced by

high intensity interval training is significant, it is only temporary, necessitating the need for

regular exercise at an intensity great enough to produce a change in RMR.  To determine if

increased fitness plays a role in this acute change in RMR, it will be necessary to test this

hypothesis against a group of trained subjects in a future study.

Although not one of the original research hypotheses, it is also concluded from the

present study that high intensity interval training leads to an increase in VO2max whereas low

intensity steady state training does not.  Significance was found not only in the pre to post

increase in VO2max in the high intensity interval training group, but there was also significance

in the magnitude of the change between groups.  This finding indicates that if training intensity

does not exceed 50% of VO2max an increase in VO2max in obese yet active pre-menopausal

women is unlikely and that high intensity interval training exercise may increase fitness at a

greater rate than low intensity steady state in this population.  In turn, increased fitness will lead

to greater caloric expenditure at a given relative intensity due to the increased absolute workload,

thus enhancing weight loss.

Recommendations

It terms of exercise as a means of weight control, it appears evident that high intensity

interval training may produce a change in fat weight and body composition not found in low

intensity interval training, especially when a longer training period is used.  It is unlikely that
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most exercise participants, especially beginners, will be able to sustain a high intensity over a

long duration; therefore, interval training is recommended because it will allow the participant to

rest between high intensity intervals.  This type of exercise will need to be done at least every

other day in order to maintain an elevated RMR.  The addition of caloric restriction appears to be

necessary in order to decrease total body weight in addition to fat weight.  The addition of

resistance training may also help increase fat loss along with increased fat free weight, but this is

an area where further research is needed.

Other recommendations for further research include using a similar mode of training with

a similar population and determining post-exercise glycogen storage, substrate partitioning, and

hormonal stimulation, all of which affect fat metabolism.  The increase in acute RMR that

accompanied high intensity interval training only accounted for a portion of the fat weight lost

during the course of the study, so it is likely that other factors are involved in the change that was

found.  No significant pre-post differences were found in caloric intake; therefore, high intensity

interval training could also be producing other physiological changes that cause it to be a better

weight loss modality than low intensity steady state exercise.

Future research should also examine the relationship in fitness and acute rise in RMR.  It

is possible that an obese, but yet more highly trained, population would not experience the

increase found in a relatively sedentary group of subjects.  A similar training protocol with strict

dietary control may also be an option for future research.  Although no significant difference was

found in caloric intake, a caloric deficit, even if statistically non-significant, over a long period of

time can easily produce a change in weight.  It is therefore necessary to ensure that a strict diet is

maintained from the beginning to the end of the treatment.
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East Tennessee State University
Informed Consent to Participate in Research

Page 1 of 7
Principal Investigators

Jeff King Lynn B. Panton, Ph.D. Craig E. Broeder, Ph.D.
P.O. Box 70654 PEXS P.O. Box 70654 PEXS P.O. Box 70654 PEXS
(423) 439-4265 (423) 439-5260 (423) 439-5380

Title of Project

To compare the effects of high-intensity interval versus low-intensity steady-state training on
weight loss and body composition in overweight women.

This Informed Consent will explain about being a research subject in an experiment.  It is
important that you read this material carefully and then decide if you wish to be a volunteer.
During this Informed Consent process I will thoroughly explain in laymen terms everything to
you.  There may be some terms in this document that may be unfamiliar to you.  Please identify
these terms and they will be explained to you.  I will be happy to answer any questions that you
may have.

Purpose of the Research

The purpose of this project is to compare the effects of high-intensity interval versus low-
intensity steady-state walking on weight loss and body composition in overweight women.

Duration

The duration of the study will be approximately 12 weeks.  There will be 2 weeks of testing,
followed by an 8-week high or low intensity walking program or an 8-week  control period with
no exercise, followed by another 2 weeks of testing.  For those individuals involved in the
walking program there will be a time commitment of 40-60 min 3 times per week.  If you are not
currently exercising we ask you not to start a program until the end of the study.  You are free to
withdraw from the study at any time.

Exclusion Criteria

To participate in this study you must be between 18 and 40 years of age.  You must be at least
30% overweight, which will be determined in the beginning of the study.  You must be weight
stable, non-smokers, not pregnant nor lactating and not taking any medications other than birth
control pills or inhalers as needed.  You will not be able to participate if you have any medical
conditions that would limited your ability to participate in exercise

Revision 12-24-98
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To compare the effects of high-intensity interval versus low-intensity steady-state training on
weight loss and body composition in overweight women.

Principal Investigators: Jeff King, Lynn B. Panton, Ph.D., Craig E. Broeder

testing or in a high or low intensity walking program.  Examples of conditions that may limit
your ability to participate are high blood pressure (>160/90 mmHg), diabetes (high blood sugar),
heart problems (irregular heart beats, circulation problems, and/or angina), poorly controlled
asthma or lung disease, knee, ankle, or joint problems.

Procedures

General Design.  Data collection will occur during several test sessions over a 2-week period.
You will be chosen by chance, like flipping of a coin, to either a control group, a high-intensity
interval walking group, or a low-intensity steady-state walking group.  The control group will be
asked to maintain their lifestyles as usual over the 8-week period.  After the 8 weeks of training
or control period all subjects will be retested on the tests that were taken at the beginning of the
study.  This final testing will take another 2 weeks. You will be required to keep a daily food
intake log beginning two weeks prior to the start of the research protocol and continuing
throughout the duration of the study.

Data Collection.  The type of data that will be collected from you will include completion of
questionnaires on your medical history, nutrition, and exercise habits.  Measurements will also
be taken on body composition (body fat), height, weight, girth, bone density (bone thickness),
resting and exercise blood pressures, resting and exercising heart rates (electrocardiograms), and
resting and exercising metabolic measurements.  Resting and metabolic measurements are taken
while you are resting or exercising and indirectly measures how hard your body works during
rest and exercise.

Questionnaires.  Questionnaires and interviews will consist of sociodemographic information,
health history, exercise and diet history.

Body Composition.  Body composition measurements will include height, weight,
circumferences, bioelectrical impedance, underwater weighing, and bone density.
Circumference measurements will be taken with a tape measure around your arms, shoulders,
hips, abdomen, thigh, and waist.

Bioelectrical impedance is a method of determining body fat and muscle mass.  During this test
you will lie down on a stretcher and 2 sets of electrodes will be placed on your right hand and
foot.  A current is then passed between the set of electrodes to measure your

Revision 12-24-98
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To compare the effects of high-intensity interval versus low-intensity steady-state training on
weight loss and body composition in overweight women.

Principal Investigators: Jeff King, Lynn B. Panton, Ph.D., Craig E. Broeder

body composition.  The current can not be felt and is not dangerous in any way. This test is done
routinely in many weight loss centers.

Underwater weighing also measures body fat and muscle mass.  During this test you will be
asked to wear a swimsuit or shorts and a jogging bra.  You will be asked to sit in a chair that is
suspended from a scale in a tank of warm water.  You will be asked to blow out as much air from
your lungs and then slowly go under the water.  A measurement of your body weight can then be
made.  You will have as much time as you need to become accustomed to the procedures and the
underwater weighing tank.

Bone thickness (bone density) will be evaluated by Dual-Energy X-ray Absorptiometry
(DEXA).  Bone densities will be taken at the Women’s Pavilion of Sycamore Shoals
Hospital in Elizabethon, TN.  During the evaluation of bone density you will lie still on an elevated table
while a bone scan is taken.  The procedure is routinely done, is painless and
will take approximately 15 minutes to complete.

Resting Metabolic Rate.  Your resting metabolic rate (RMR) will be measured in the morning
after a 12 hour fast.  You will be asked not to perform exercise for at least 48 hours prior to the
test.  You will be transported by car to the testing center and will lie down and rest for 30
minutes prior to the test.  A face mask will be positioned over your nose and mouth to measure
the air that you exhale.  By measuring the air you exhale we can determine the amount of energy
your body uses at rest. This test will take 30 minutes to complete.  This test will also be
completed again, for those of you that are exercising, after the first day of your exercise session.
This will be done to evaluate if exercise affects the energy your body uses at rest.

Maximal Oxygen Uptake. 
Maximal oxygen uptake will be measured while you undergo a graded exercise stress test
on a treadmill.  This also measures the energy your body uses but during exercise.  You
will be asked to walk on the treadmill as long as you can.  When you become fatigued and
no longer want to walk we will stop the test.  During this test we will be monitoring your heart rate
and blood pressure.  We will monitor your heart rate by placing electrodes on
your chest and taking pictures of the activity of your heart.  This is called a 12-lead
electrocardiogram and is a test similar to the test you can get in a physician’s office called
a stress test.  Your blood pressure will be measured with a cuff on your upper arm every 2 minutes.
If your blood pressure gets too high (220/110 mmHg) or your heart gets an
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irregular rhythm we will stop the test.  The grade and speed of the treadmill will be slowly
increased until you request to stop or signs or symptoms of heart problems occur. Each stage of
the treadmill test will be 1 minute in duration.  The initial stage will allow you to warm-up by
walking at 1.7 mph at 6% grade.  The second stage increases the speed to 2.2 mph.  After stage
2, either the grade increases by 2% or the speed increases by 0.4 mph until the treadmill is at a
14% grade.  At that point, the speed will be increased by 0.4 mph every minute until the test is
completed. Your maximal oxygen consumption will be measured by placing a mouth piece in
your mouth and collecting the expired air.  The air that is collected is routed by plastic tubing
that is attached to the mouth piece through a metabolic cart that analyzes the gas and calculates
the energy your body uses during exercise.

Training.  After you complete the two weeks of initial testing you will begin the training phase of
the study. You will be chosen by chance, like flipping of a coin, to either a control group, a high-
intensity interval walking group, or a low-intensity steady-state walking group.  If you are in the
control group you will be asked to maintain your lifestyle as usual over the 8-week period. The
two exercise groups will exercise on a treadmill three times a week for 8 weeks.  Exercise
intensity (how hard you work) will be based on the treadmill test.  Increases in intensity will not
be made by increasing the speed of the treadmill but rather by increasing the grade.  For training
you will select a comfortable walking speed.  The grade of the treadmill will be adjusted to meet
your required intensity.

If you are in the low intensity steady-state walking group you will exercise at 50% of your
maximal energy expenditure for a duration that will expend 300 kcal (a measure of  energy your
body uses). This will be determined from your body weight and using results from the maximal
oxygen uptake test.  If you are in the high-intensity interval walking group you will exercise at
105% of your energy expenditure for approximately 2 minutes.  After 2 minutes of high intensity
walking you will walk at 0% grade for 2 to 5 minutes.  Duration of exercise and intervals of high
and low grades will be determined based on your weight and results from your maximal oxygen
uptake test.  You will also train until you expend 300 kcal.  Every 2 weeks your energy
expenditure during exercise will be checked by placing the mouth piece in the mouth and
collecting expired gas for approximately 10 minutes.  Your weight will also be monitored on a
weekly basis to determine if duration needs to be altered to maintain the 300 kcal expenditure
during the exercise. An additional maximal oxygen test will be completed at week 4 to adjust
exercise protocols for increases in fitness levels.  At the end of the study all tests that were
performed at the beginning of the study will be repeated.
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Possible Risks/Discomforts

During the study you may be become self-conscious about the testing of body composition.
Every effort will be made to make you feel comfortable. There are no physical risks to
measuring body composition by circumferences nor bioelectrical impedance.  The underwater
weighing procedures may be intimidating for those of you that are afraid of water.  If you do
have problems with this technique it will not be completed.  Careful explanation of procedures
and practice will be given to minimize fear and swallowing of any water that may occur.  Bone
density will be evaluated by Dual-Energy X-ray Absorptiometry (DEXA).  This involves some
radiation of approximately 12 mREM per spine or hip scan and 0.5 mREM per total body scan,
or a total of about 25 mREM for the three scans.  This is comparable to the radiation you would
receive from a chest x-ray (20-50 mREM), but substantially less that a full dental x-ray (300
mREM) or an abdominal x-ray (250 mREM). The measurement of bone mineral using the
DEXA is non-invasive.

The risk of cardiovascular events during the stress test and training period will be minimized by
careful review of your medical history.  You will not be able to participate in this study if you
have any evidence of heart disease, high blood pressure, diabetes or problems with your joints.
You may experience some muscle soreness after stress testing walking.  Care will be taken to try
and minimize soreness by thoroughly stretching before and after each exercise session.

Possible Benefits and/or Compensation

The benefits of your participation in the study will include a free battery of tests. Your results
will be made available to you and your personal physician.  You will also be able to see how
your fitness levels compare to individuals your age in the general population.  You may also
benefit by losing weight and becoming more physically fit.  A nutritionist will also be made
available to help counsel you on proper nutrition at the end of the study.

Contact for Questions

If you have any questions or research related problems at any time, you may call Lynn Panton,
Ph.D. at 439-5260 or Craig Broeder, Ph.D. at 439-5380 .  You may call the Chairman of the
Institutional Review Board at 423/439-6134 for any questions you may have about your rights as
a research subject.
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Confidentiality

Every attempt will be made to see that your results are kept confidential.  A copy of the records
from this study will be stored in the Department of Physical Education, Exercise and Sport
Sciences in room E-116 for at least 10 years after the end of this research project.  The results of
this study may be published and/or presented at conferences without naming you as a subject.
Although your rights and privacy will be maintained, the Secretary of the Department of Health
and Human Services, the East Tennessee State University/V.A. Medical Center Institutional
Review Board, the Food and Drug Administration, and the ETSU Department of Physical
Education, Exercise and Sport Sciences have access to the study records.  Your records will be
kept completely confidential according to current legal requirements.  They will not be revealed
unless required by law, or as noted above.

Compensation for Medical Treatment

East Tennessee State University will pay the cost of emergency first aid for any injury that
may happen as a result of your being in this study.  They will not pay for any other medical treatment.
Claims against ETSU or any of its agents or employees may be submitted to the Tennessee Claims
Commission.  These claims will be settled to the extent allowable as
provided under TCA Section 9-8-307.  For more information about claims call the Chairman
of the Institutional Review Board of ETSU at 423/439-6134.
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Voluntary Participation

The nature demands, risks, and benefits of the project have been explained to me as well as are
known and available.  I understand what my participation involves.  Furthermore, I understand
that I may withdraw from the study at any time without penalty.  I have read, or have had read to
me, and fully understand the consent form, I sign it freely and voluntarily.  A signed copy has
been given to me.  Your study record will be maintained in strictest confidence according to
current legal requirements and will not be revealed unless required by law or as noted above.

                                                                                                                                                
Signature of Volunteer Date

                                                                                                                                                
Signature of Investigator Date

                                                                                                                                                
Signature of Witness Date
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Narrative Description Guidelines

1. Project Title
To compare the effects of high-intensity interval versus low-intensity steady-state 
training on weight loss and body composition in overweight women.

2. Place to be Conducted
Testing and training will be carried out in the Human Performance Laboratory located in
the Mini Dome at East Tennessee State University.  Some of the training sessions may be
carried out at the Johnson City Medical Center Wellness Center.

3. Objectives
The objective of this project is to compare the effects of high-intensity interval versus
low-intensity steady-state training on weight loss and body composition in overweight
women

4-5. Summary and Specific Role of Human Subjects

Researchers have attempted to determine the most suitable means of combating the
growing problem of obesity in America.  Most studies agree that exercise is an important
component in any weight loss program.  Even though studies may not find dramatic
decreases in weight loss, they have found that exercise preserves lean mass and increases
total daily energy expenditure (TDEE), which may facilitate weight loss over an extended
period of time.  However, the research does not agree on the most beneficial form of
exercise.  It has been found that continuous steady state exercise below the lactate
threshold for prolonged periods is as beneficial for weight loss as higher intensity
exercise (Grediagin, Cody, Rupp, Benardot, & Shern, 1995).  Conversely, interval
training above lactate threshold for shorter periods of time has been found to be more
beneficial for increasing TDEE (Treuth, Hunter, & Williams, 1996) which in turn yields
greater caloric expenditure throughout the day.   Therefore, the purpose of the present
study is to compare the effects of high-intensity interval versus low-intensity steady-state
training on weight loss and body composition in obese pre-menopausal women.

Subjects.  Subjects for this study will be recruited through flyers and by word of mouth
through the Johnson City and surrounding areas.   The primary criterion for subject
selection is that all subjects will be clinically obese per-menopausal women. Obesity in
women is defined as having a body fat percentage greater than 30%.  To avoid possible
maturation due to the beginning of menopause, all subjects will be between 18 and 40
years of age.  All subjects will be weight stable, non-smokers, not pregnant nor lactating
and not taking any medications other than birth control pills.  Subjects will not have any
medical conditions that would be contraindicated to an exercise program or potentially
hinder the effects of the exercise treatment. Subjects will be required to keep a daily food
intake log beginning two weeks prior
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to the start of the research protocol and continuing throughout the duration of the study.
Each subject will then be given a dietary check sheet based on her food intake log in
order to help her adhere to a constant diet.  Approximately 30 subjects will be recruited
for this study.  There will be three experimental groups a control group (n=10), a high-
intensity interval training group (n=10), and a low-intensity steady-state training group
(n=10).

General Design.  Data collection will occur during several test sessions over a 2-week
period.  All testing will be repeated after the 8 weeks of training.

Data Collection.  The type of data collected from the participants will include scales and
items measuring sociodemographic information, body composition, height, weight, girth,
blood pressures, heart rates, resting metabolic rate, and maximal oxygen uptake
(VO2max).

Questionnaires.  Standardized questionnaires will consist of  sociodemographic
information.

Body Composition. Body composition measurements will include bone density,
underwater weighing, bioelectrical impedance, and circumferences.  Waist-to-hip ratios
will also be evaluated.  This measurement was chosen due to its high correlation with
ischemic heart disease, stroke, diabetes, hypertension, and all cause mortality in both men
and women.

Bone density will be evaluated by Dual-Energy X-ray Absorptiometry (DEXA).  This
involves some radiation of approximately 12 mREM per spine or hip scan and 0.5
mREM per total body scan, or a total of about 25 mREM for the three scans.  This is
comparable to the radiation a person receives from a chest x-ray (20-50 mREM), but
substantially less that a full dental x-ray (300 mREM) or an abdominal x-ray (250
mREM).  The measurement of bone mineral using the DEXA is non- invasive.

Underwater weighing measures body density by having the subject sit in a chair that is
suspended from a scale in a tank of water.  The subject is asked to blow out as much air
from the lungs and then slowly go under the water.  A measurement of body weight can
then be made.  With generalized equations body density and ultimately body fat can be
calculated.

Bioelectrical impedance measures the resistance of current through the body. A very low
50 Khz current is passed through 2 sets of electrodes and resistance is measured.  Fat
mass, fat-free mass, and percent body fat will be determined by resistance, reactance, and
impedance.
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Resting Metabolic Rate.  Resting metabolic rate (RMR) will be measured in the
morning after a 12 hour fast.  Subjects will be asked not to perform exercise for at least
48 hours prior to the test.  Subjects will be transported by car to the testing center and
will rest in a semirecumbent position for 30 minutes prior to the test.  An air tight face
mask will be positioned on the subject.  Ventilation, oxygen consumption, and respiratory
exchange ratio will be measured for 30 minutes.  The subject will remain inactive and the
noise and light level in the room will be diminished.  Resting metabolic rate will also be
taken the day after subjects begin their treatment protocols to evaluate the effects of acute
exercise bouts on RMR.

Maximal Oxygen Uptake. Maximal oxygen uptake (VO2max) will be measured while
subjects undergo a graded exercise stress test on a treadmill.  The grade and speed of the
treadmill will be slowly increased until the subjects request to stop or signs or symptoms
of cardiovascular problems occur. Each stage of the treadmill test will be 1 minute in
duration.  The initial stage will allow subjects to warm-up by walking at 1.7 mph at 6%
grade.  The second stage increases the speed to 2.2 mph.  After stage 2, either the grade
increases by 2% or the speed increases by 0.4 mph until the treadmill is at a 14% grade.
At that point, the speed will be increased by 0.4 mph every minute until the test is
completed.  Subject will be monitored continuously by a 12-lead electrocardiogram and
blood pressure will be measured every 2 minutes.  Maximal oxygen consumption will be
measured by placing a mouth piece in the subject’s mouth and collecting the expired air
(oxygen and carbon dioxide).  The air that is collected is routed by plastic tubing that is
attached to the mouth piece through a metabolic cart that analyzes the gas and calculates
the VO2max.

Training.  After subjects complete the 2 weeks of initial testing they will begin the
training phase of the study.  Subjects will be randomly assigned to one of three groups 1)
a control, that will not exercise, 2) a low-intensity steady-state training group and 3) a
high-intensity interval training group.  The control group will be asked not to change
their lifestyle over the 8-week study. The two exercise groups will exercise on a treadmill
three times a week for 8 weeks.  Exercise intensity will be based on the treadmill
VO2max test.  Increases in intensity will not be made by increasing the speed of the
treadmill but rather by increasing the grade.  For training all subjects will select a
comfortable walking speed and grade will be adjusted to meet the required intensity.  The
low intensity steady-state group will exercise at 50% of their VO2max for a duration that
will expend 300 kcal.  This will be determined from their body weights and using results
from their VO2max tests.  The high-intensity interval group will exercise at 105% of their
VO2max for increments lasting two minutes.  After 2 minutes at 105% of VO2max
subjects will walk at 0% grade for 2 to 5 minutes.  Again duration of exercise and
intervals of high and low grades will be determined based on weights and results of the
VO2max tests.  Again subjects will train until they expend 300 kcals.  Every 2 weeks
subjects VO2 will be checked to see if subjects are training at their specified intensities.
The VO2 will be checked by placing the mouth piece in the mouth and collecting expired
gas for approximately 10 minutes.  Each subject’s weight will also be monitored on a
weekly basis to determine if duration needs to be altered to maintain the caloric
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expenditure during the exercise at 300 kcal. An additional VO2max test will be completed
at week 4 to adjust exercise protocols for increases in fitness levels.  At the end of the
study all tests that were performed at the beginning of the study will be repeated.

6. Specific Risks to Subjects

During the testing subjects may be become self-conscious about the testing of body
composition.  Every effort will be made to make the subjects feel comfortable and not
embarrassed by their weight. There are no physical risks to measuring body composition
by circumferences nor bioelectrical impedance.  The underwater weighing procedures
may be intimidating for those subjects afraid of water.  If the subjects do have problems
with this technique it will not be completed.  Careful explanation of procedures and
practice will be given to minimize fear and swallowing of any water that may occur.
Bone density will be evaluated by Dual-Energy X-ray Absorptiometry (DEXA).  This
involves some radiation of approximately 12 mREM per spine or hip scan and 0.5
mREM per total body scan, or a total of about 25 mREM for the three scans.  This is
comparable to the radiation a person receives from a chest x-ray (20-50 mREM), but
substantially less that a full dental x-ray (300 mREM) or an abdominal x-ray (250
mREM). The measurement of bone mineral using the DEXA is non-invasive.

The risk of cardiovascular events during the stress test and training period will be
minimized by selecting young subjects less than 40 and by evaluating their medical
histories.  All subjects will be free of medical conditions that would be contraindicated to
an exercise program such as diabetes, high blood pressure, or abnormal heart rhythms.
Studies of participants in recreational sports showed 1 cardiovascular complication per
495,000 participants.

Subjects may experience some muscle soreness after stress testing and training.  Care will
be taken to try and minimize soreness by thoroughly stretching each participant before
and after her exercise session.

7. Benefits to Subjects

Subjects will be given a battery of tests free of charge.  All results will be made available
to subjects.  The subjects may benefit from the exercise by losing weight and becoming
more aerobically fit.

8. Inducements

No payment will be given to subjects but a nutritionist will be made available to help
counsel the subjects on proper nutrition.

9. Subject Confidentiality
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Each patient’s right to privacy will be maintained.  The medical information will be
available for inspection by the ETSU/IRB.  All information about the patient will be
treated confidentially and will not be released, except as noted above, unless required by
law.

10. Informed Consent

The informed consent is attached.  All subjects will have the Informed Consent 
explained to them and all their questions will be answered.  The subject will be 
required to sign the Consent in order to participate in the study.

11. Adverse Reaction Reporting

All adverse reactions will be reported verbally to the IRB chairman within 24 hours, and
in writing to the IRB Board within 10 days of occurrence.
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13. Location of Records

All data and samples will be coded numerically by subject.  The master sheet for these
codes and questionnaires obtained from the subjects will be retained by the principal
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Dome.  No names, initials, or other identifying characteristics will be reported in
publication.  Data will be kept for at least 10 years.
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Table 1: TRAINING PROTOCOL

Group Treadmill Time Interval Intensity Average Intensity

ST (n=8)

IT (n=7)

51.1 ± 8.9 min*

51.0 ± 9.0 min*

--

2 min @ ~ 95%
3 min @ ~ 30%

~ 50%

~ 55%

* Statistically similar (p < 0.05)
ST: low intensity steady state training group; IT: high intensity interval training group

Table 2: PHYSICAL CHARACTERISTICS (N=15)

Variable Interval Training Group (n=7) Steady State Training Group (n=8)

Age (yrs)

Height (cm)

Weight (kg)

BMI (kg/m2)

33.0 ± 7.4 (20-39)

167.8  ± 5.6 (155.6-172.7)

94.0 ± 24.1 (61.8-125.0)

33.5 ± 7.3 (25.5-43.2)

33.0 ± 11.5 (18-44)

166.0 ± 7.4 (157.5-180.3)

90.9 ± 22.1 (63.9-125.9)

33.0 ± 7.9 (24.5-48.4)

BMI: Body Mass Index
Values are mean ± standard deviation (range in parentheses)
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Table 3: CHANGES IN PHYSICAL CHARACTERISTICS AFTER 8 WEEKS OF TRAINING
(N=15)

Interval Training (n=7) Steady State Training (n=8)

Variables Pre Post Pre Post

Body Weight (kg)

BMI (kg/m2)

% Body Fat (%)

Fat Weight (kg)

Fat Free Weight (kg)

94.0 ± 24.1

33.5 ± 7.3

45.5 ± 7.8

44.1 ± 17.3

49.9 ± 8.4

92.8 ± 26.4

33.0 ± 8.3

43.5 ± 6.9‡

41.8 ± 17.3*

51.0 ± 10.0

90.9 ± 22.1

33.0 ± 7.9

42.4 ± 5.2

39.4 ± 14.1

51.5 ± 8.8

91.6 ± 22.1

33.3 ± 8.2

42.9 ± 4.6

40.1± 13.9

51.5 ± 8.6

Values are means ± standard deviation
‡a trend toward significant difference from pretest (p = 0.07)
*significant from pretest at p < 0.01

Table 4: CHANGES IN DIETARY CHARACTERISTICS OVER THE 8 WEEKS OF
TRAINING (N=11)

Interval Training (n=6) Steady State Training (n=5)
Variables Pre Post Pre Post

kcal/day

% CHO

% Fat

% Protein

1717± 520

48.4 ± 8.0

32.3 ± 7.0

19.3 ± 4.5

1479 ± 480

46.8 ± 9.5

33.0 ± 8.0

20.2 ± 2.2

1479 ± 514

52.2 ± 5.3

32.5 ± 3.5

15.3 ± 3.0

1392 ± 406

47.1 ± 10.0

32.8 ± 8.3

20.2 ± 2.7‡

Values are means ± standard deviation
‡a trend toward significant difference from pretest (p = 0.07)
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Table 5: CHANGES IN METABOLIC CHARACTERISTICS (N=15)

Interval Training Group ( n=7) Steady State Training Group
(n=8)

Variables Pre Acute Post Pre Acute Post

RMR (kcal/day)

VO2rest
(ml•min-1)

VO2rest/kg
(ml•kg-1•min-1)

VO2rest/kg
FFW
(ml•kg-1•min-1)

RERrest

1688
± 373

243 ± 54

2.63
± 0.34

4.86
± 0.6

0.80
± 0.03

1762
± 376‡

253 ± 53*

2.74
± 0.33‡

5.10
±  0.6*

0.81
±  0.03

1720
± 337

244 ±  45

2.71
±  0.42

4.8
± 0.5

0.84
±  0.11

1756
± 408

255 ± 59

2.81 ±
0.34

4.9
± 0.5

0.78
± 0.06

1787
± 397

258 ± 59

2.87 ±
0.41

5.0
± 0.6

0.79
± 0.04

1789
± 390

255 ± 52

2.80 ±
0.31

4.9
± 0.4

0.82
± 0.06

RMR: Resting Metabolic Rate; VO2rest: Resting oxygen consumption;
VO2rest/kg: Relative resting oxygen consumption;
VO2rest/kgFFW: Resting oxygen consumption adjusted for fat free weight;
RERrest: Resting respiratory exchange ratio
Values are means ± standard deviation
‡a trend toward significant difference from pretest (p = 0.07)
*significant from pretest at p < 0.05
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Table 6: ACUTE EFFECT OF EXERCISE ON RMR

Study Population Duration Intensity RMR Tested RMR Change

Present study

Poehlman
et al., 1989

Present study

Bielinski
et al., 1985

Broeder
et al., 1992b

Obese women

Lean, fit
males

Obese women

Lean, trained
males

Lean males,
varied
training

~51.1 min

90 min

~51 min
(2 min high
3 min low)

3 hr

50 min

~50%

~50%

~95% high
~30% low

~50%

70-85%

~17 hr

24 & 48 hr

~17 hr

18 hr

14 hr

None

None

+ 4.4%

+ 4.7%

+ 4.8%

Table 7: ENERGY BALANCE: KCAL/DAY  EXPENDED AT RMR VS. KCAL/DAY
CONSUMED

Group (N=11)
Kcal/day
consumed

PreRMR
Kcal/day
expended

Pre Energy
Balance
(kcal/day)

AcuteRMR
Kcal/day
expended

Acute Energy
Balance
(kcal/day)

IT (n=6)

ST (n= 5)

1717 ± 520

1479 ± 514

1647 ± 392

1908 ± 392

+70 ± 647

-429 ± 670

1704 ± 520

1956 ± 377

+12 ± 638

-477 ± 582

Values are means ± standard deviation
No significant differences were found
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Appendix D
Figures
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Fig. 1: WITHIN AND BETWEEN GROUP CHANGES IN VO2MAX

*Significant from pretest (p < 0.01)
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Fig. 2: DIFFERENCE IN CHANGE IN VO2MAX

*Significant from ST (p < 0.001)
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Fig. 3: CHANGE IN ABSOLUTE VO2MAX

*Significant from IT (p < 0.01)
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Fig. 4: CHANGE IN BODY FAT PERCENTAGE

*Significant from ST (p < 0.05)
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Fig. 5: CHANGE IN FAT MASS

*Significant from ST (p < 0.01)
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Fig. 6: KCAL/DAY CONSUMED VS. EXPENDED
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