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Introduction 

Ant colony optimization (ACO) is an algorithm which simulates ant foraging behavior.  When 

ants search for food they leave pheromone trails to tell other ants which paths to take to find food.  In 

computer science, this has been adapted to many different problems including the traveling salesman 

problem.  The algorithm functions by randomly sending out artificial ―ants‖ from a hub into a search 

space.  Each ant finds a solution and then leaves an artificial pheromone trail along its path.  The amount 

of pheromones depends on the success of the solution, i.e., a better solution leaves a stronger pheromone 

trail.  The next iteration of ants takes the pheromones into account when choosing a direction to travel.  

Pheromones also weaken over time so less-optimal paths are abandoned for more-optimal paths.  The 

result of many iterations is finding a good solution (although not necessarily the optimal solution as 

finding an optimal solution is NP-hard (Coltorti & Rizzoli, 2007)). 

ACO has been used to solve many different types of problems.  Coltorti (Coltorti & Rizzoli, 

2007) used ACO to solve vehicle routing problems.  These problems involved supermarkets moving food.  

The algorithm determined how to minimize driver time and cost while making sure all deliveries were 

made on time.  ACO has also been applied to Tetris by Chen (Chen, Wang, Wang, Shi, & Gap, 2009).  

Chen created a value function which gave a value to the successfulness of placing a tetromino.  Each time 

a piece arrives, ―ants‖ crawl the grid of the game space and determine the path for the tetronimo to reach 

the optimal position.  By this method as many as 23,000 lines were removed in a game.  França (França, 

Coelho, Von Zuben, & Attux, 2008) used ACO to explore continuous search spaces.  In França’s 

algorithm, ants in each new generation are concentrated around the previous best solution.  They explore 

the area around the solution to try to improve it.  The advantage is that a local optimal solution can be 

found quickly.  However, this can cause premature convergence because only one area of the search space 

is examined at a time.  Melo (Melo, 2009) attempted to avoid premature convergence through the use of 

multiple colonies.  At the end of each iteration, the optimal path determined by any colony is used to 
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adjust the other paths.  Non-optimal paths are moved closer to the current optimal path.  This causes more 

independent searches of the optimal area. 

There is no research indicating the use of ACO in video game Artificial Intelligence (AI).  

Pheromone trails in ACO are essentially a way for independent ants to communicate with each other.  

This style of communication can be incorporated into a game AI allowing separate AI agents to 

communicate with each other.  Pheromone trail communication can be implemented by having a 

pheromone grid overlaying the game environment.  Enemies can send out signals to other enemies via 

pheromone trails that the other enemies can choose to follow these trails.  Enemies can send out 

pheromone trails when they see the player, when they die, or when some other desired condition is met.  

By controlling the length and the strength of the trails left, one can control inter-agent communication.  

The better the agents can communicate the better they will be able to accomplish their goal of defeating 

the player.  Therefore, by controlling the effectiveness of the communication between agents, one could 

control the difficulty of the game. 
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Review of Literature 

In order to avoid the extremes of frustration or boredom, a video game should challenge its 

players without being excessively difficult.  Historically, two strategies have been used for matching 

game difficulty with a player’s skill level.  The first, in player-versus-player games, is to trust players to 

play against similarly skilled opponents and to match up opponents as best as possible.  The second, in 

player-versus-environment games, is to support multiple static difficulty levels and allow the player to 

choose.   

Creators of video games have devised two additional kinds of adjustments for managing a game’s 

difficulty.  The first involves controlling the scarcity of the environment’s resources that allow the player 

to succeed.  The second involves adjusting the quality of computer-managed opponents.  Some newer 

games use artificial-intelligence-like strategies for dynamically adjusting a game’s difficulty based on a 

player’s skill level.  The difference of dynamic difficulty control is that the environment’s resources or 

the enemies’ quality (or both) is in a constant state of flux so as the player improves the game becomes 

harder or as the player does poorly the game becomes easier. 

A computer-generated opponent is known as an agent or an artificial intelligence (AI).  Modern 

games have complex AIs that include methods for carrying out actions and a controller for determining 

which actions to perform.  Controllers have been implemented as finite-state machines, hierarchical 

decision trees, and goal oriented action programming, which uses a variation of the A* shortest-path 

algorithm to find appropriate actions. 

Ant Colonization Optimization (ACO) is a search algorithm that could find use in game 

controllers that adjust to players’ levels of skill.  The ACO algorithm is a type of shortest-path algorithm 

that finds locally optimal solutions to a graph transversal problem.  Artificial ants search a graph trying to 

reach a certain point.  When they reach their goal they release a pheromone trail which other ants have a 

chance to follow. 
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ACO pheromone trails could be used by agents to pass information to other agents in a game 

environment.  By modifying the parameters for leaving a trail, the effectiveness of communication 

between agents could be controlled.  Since better communications between agents would make them 

harder to defeat, managing the effectiveness of communication could be used to manage game difficulty. 

Game Programming Basics 

The task of realizing an AI for first-person shooter games—games where the player sees the 

world through the main characters eyes and fights enemies using a variety of weapons—can be divided 

into two main requirements.  The first is to implement the AI’s actions, including looking for an enemy, 

avoiding obstacles while moving, and targeting an enemy with a gun (Howland, 1999).  The second is to 

implement the AI’s decision-making processes, to choose which actions the AI should perform. 

Action, the simpler of the two requirements, is typically implemented as two components.  The 

first, a weapons controller, models shooting, including the determination of the shots’ effects, like damage 

(based on range and accuracy) and change in ammo.  The other component models motion, including 

searching for and pursuing enemies.  

Searching, is commonly handled using A*, described by Nareyek as ―an improved version of 

Dijkstra’s shortest-path algorithm‖ (Nareyek, 2004).  A* functions by overlaying a graph over the game 

map.  The graph’s vertices are pre-determined waypoints defined by the programmer.  The programmer 

also defines paths between these waypoints as well as their distances.  These paths are the graph’s edges.  

When an agent wants to move it locates its nearest waypoint.  From there, the A* algorithm finds the 

shortest path between the starting waypoint and the waypoint closest to the agent’s destination.  That path 

is passed to the mover and the mover takes the agent to the destination.  Once an enemy has been sighted, 

pursuit is conducted by using the viewing field to keep the player in view.   
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Fig 2. A Simple Finite State Machine 

Obstacle avoidance, a concern that arises in searching and pursuit, can be managed by first 

moving to an obstacle’s edge and then along it until the agent can again move straight towards its 

destination.  A better strategy adds an avoidance vector, which the algorithm associates with each 

obstacle, to an agent’s current movement vector (see Fig. 1).  The resulting path will curve around the 

obstacle, because the goal vector is constantly tracking the goal.  Obstacle avoidance algorithms act as an 

intermediary between the nodes on an A* graph.  A* gives the mover a set of goals to move to, but simple 

obstacle avoidance algorithms handle any obstacles encountered between the nodes 

The other major part of game AI, decision making, is typically implemented in one of several 

ways.  The most basic implementation strategy, a finite state machine (FSM) (Nareyek, 2004), is a graph 

that characterizes every state that an AI agent can be in and all conditions for transitioning between states.  

An example of a very simple FSM would be one with two states and three transition conditions (See Fig. 

2).  FSMs are implemented using if-then statements.  The problem with FSMs is that they become 

unmanageably complex with large and complex AIs.   

 

 

Avoidance vector 

Goal 
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Resultant 

movement vector 

goal 

Fig 1. Avoidance Vectors 
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Another simple way to handle decision making is with decision trees.  To reach a decision, the AI 

traverses the tree.  The first level is very general with a question like ―Should I work on attack or 

defense?‖  Based on the decision, the AI looks at the appropriate sub-tree.  Eventually it descends to a 

leaf node that specifies an action.  Like FSMs, decision trees can be implemented with if-then statements. 

Actual game AIs combine simple and advanced mechanisms to create believable and realistic 

agents.  Game AIs are effective if the game’s agents appear to have common sense (Isla, 2005).  This 

means knowing the right actions to do as well as how to do them and when to act.  To establish the 

appearance of common sense, the AI needs to exhibit coherency, transparency, runnability, and 

understandability.  Coherency is ensuring that behavior transitions are realistic and avoiding dithering, 

i.e., quick switches among a collection of states.  Transparency is giving an agent an appearance that 

matches its current internal state, i.e. there should be some sort of graphical representation of an agent’s 

state.  Runnability is ensuring that the AI code can complete execution in the processor time allotted for 

AI decision making.  Understandability is ensuring that the system is simple enough so that the developer 

can understand it.  Also, the AI should also allow for character-to-character variety.  Lastly, the AI needs 

variability so it can be ―directed by the designers in service of the story‖ (Isla, 2005) through high-level 

scripting. 

AI Case Studies 

Halo 2 has a complex AI that used multiple strategies to achieve realism (Isla, 2005).  Halo 2’s 

AI system uses a hierarchical FSM (HFSM) combined with a decision–tree-based structure called a 

behavior diagram (see Fig. 3).  An HFSM is an FSM whose levels are prioritized lists of states.  Halo’s 

AIs service states according to their priority.  A correct ordering of these states helps to ensure that an AI 

avoids nonsensical behaviors like trying to enter a vehicle if they are already in one.   
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Fig 3. Sample Behavior Diagram (Isla, 2005) 

The problem with HFSMs is the occasional need to dynamically raise the priority of a lower 

priority action. To allow a lower priority state to override a higher priority state, Halo 2 uses behavior 

impulses: pointers that reference states in behavior diagrams.  An example of a situation that would 

require a temporary priority adjustment is directing an AI to enter a vehicle if the player gets in first.  

Normally, fighting enemies would have a higher priority than finding a vehicle, but the 

―player_in_vehicle‖ impulse should be ranked higher than the fighting behavior.  The 

―player_in_vehicle‖ impulse simply references the ―enter_vehicle‖ code, rather than duplicating it.  

Impulses can be positioned at any level of a behavior diagram. 

Behavior impulses can also arbitrarily execute small sections of code as well as behaviors.  These 

codes, for example, can be used to log data, display debugging information, or play sounds.  This opens 

up a wide range of uses for behavior impulses. 

When a behavior diagram becomes large, determining which behaviors are relevant at a given 

time takes considerable time.  To reduce the time needed to assess behavior relevancy, behaviors are 

tagged with the states in which they are relevant and temporarily removed from behavior diagrams when 

they become irrelevant.  For instance, when the agent is a gunner in a vehicle the ―throw grenade‖ 

behavior could be removed and the retreat option could be removed (if they are not the driver).  



12 

 

Another strategy for reducing the number of behaviors to check involves the use of stimulus 

behaviors: behaviors that are dynamically added to and removed from behavior diagrams by an event 

handler.  An example of a stimulus behavior would be a ―flee_because_leader_died‖ impulse.  This 

impulse could be added to a behavior diagram by actor death event handler, and removed after an 

appropriate period of time or a compensatory event, like the arrival of a new leader. 

Although different Halo 2 AI’s have different behavior properties, AI agents are similar enough 

to warrant the use of character hierarchies and inheritance to simplify implementation.  For example, in 

Halo 2 grunt majors take more punishment and do more damage than regular grunts, but exhibit identical 

behavior.  So, a grunt major inherits all the characteristics of a grunt but modifies the vitality and damage 

statistics. 

Another advanced AI system is the Goal Oriented Action Planning (GOAP) system developed by 

Jeff Orkin for Monolith’s first person shooter, F.E.A.R. (2005) (Orkin, Agent Architectur, 2005) (Orkin, 

Three States, 2006).  In place of an elaborate FSM GOAP searches for actions that meet a goal.  This 

allows Non-Player Character (NPC) agents to handle unexpected situations. 

Each agent is divided into sensors, working memory, a real-time planner, a blackboard, and 

subsystems that manage actions like movement and aiming.  Sensors gather information about the agent’s 

environment.  Some sensors are event driven (like recognizing damage) while others poll (like finding 

tactical positions in the environment).  The sensors store information gathered in the agent’s working 

memory.  The real-time planner watches for significant changes to working memory and responds by 

reevaluating the agent’s goals and strategies for accomplishing those goals.  If the goals are altered, the 

planner adjusts the relevant variables on the blackboard.  Finally, the subsystems check the blackboard for 

changes at a set time interval and make any appropriate changes to their behavior. 

The advantages of controlling agents using multiple components instead of a single FSM are 

threefold.  First, this decouples goals from actions, making it easier to associate different strategies for 

achieving common goals with different units.  The alternative, associating multiple strategies for 

achieving a common goal with a single FSM, produces extremely complex FSMs.  Second, this makes it 
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easier to define behavior incrementally, including defining what behaviors are prerequisites for other 

behaviors and adding new actions late in the development cycle.  Allowing the real-time planner to 

determine the appropriate transitions at run time eliminates the need to work new actions into an FSM.  

The third advantage is better support for dynamic problem solving.  GOAP makes it straightforward to 

create agents that work through a list of prioritized strategies until they try one that succeeds.  This can 

produce very realistic AI behavior.  Orkin gives this example: 

Imagine a scenario where we have a patrolling A.I. who walks through a door, sees the player, and starts 

firing. If we run this scenario again, but this time the player physically holds the door shut with his body, 

we will see the A.I. try to open the door and fail. He then re-plans and decides to kick the door. When this 

fails, he re-plans again and decides to dive through the window and ends up close enough to use a melee 

attack! (Orkin, Three States, 2006) 

Opening the door was the highest priority option, but it failed, as did the second priority option of kicking 

the door.  The agent kept trying different methods until it found one that worked. 

In F.E.A.R., agents interact with their environment through the use of smart objects.  A smart 

object is anything in the environment an agent can use to accomplish a goal.  For instance, if an agent’s 

goal is to get to a point on the other side of a closed door—a type of smart object—the agent would 

interact with the door to open it.  Nearby smart objects are detected by an agent’s sensors and placed in 

the agent’s working memory.  Since some actions may only be available when certain smart objects are 

present, an agent must reevaluate its goals when new objects are placed into working memory.  For 

example, a weaponless agent that is chasing a player should pick up an assault rifle when it sees one and 

then continue to chase.  An agent could also use a smart object to make cover for itself by flipping a table 

over and hiding behind it.  The benefit of smart objects is that the programmer does not have to script the 

agent to kick over the table; the agent does so because the action helps to accomplish the agent’s goal. 

Action planning is done using the A* algorithm.  A*, which was traditionally used for navigating 

a playing field, has been adapted to find the best way to accomplish a goal.  To do this, each action is 

associated with a cost, with higher costs denoting less desirable actions.  If a goal is treated as a 
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destination in a graph, possible actions as edges and resulting world states are intermediary nodes, A* can 

find the most efficient path (i.e., sequence of actions) to reach the goal.  If that path fails to accomplish 

the goal, the edge for the inappropriate action can be removed from the search and the next best path can 

be found.  Paths that A* finds may need to be disqualified because some paths may be unavailable at 

certain times. Certain actions may only be relevant if an agent is in a squad, or if the agent has no weapon. 

GOAP also produces ghost behaviors or unintended behaviors that emerge in practice.  One 

example of this was NPCs’ looking at distant grenades, due to NPCs’ use of noise to find players.  

Another ghost behavior was NPCs’ finding points of cover to a player’s side, which gave the appearance 

of NPCs working together to flank a player.  Ghost behaviors emerge in a GOAP system due to 

unanticipated state transitions.  An FSM would require a programmer to tell an agent how to act in the 

presence of a grenade; with GOAP, defining the grenade as a danger and a disturbance causes the agent to 

determine an appropriate—or, in the case of ghost behaviors, inappropriate—reaction at run time. 

Another AI technique used in F.E.A.R. is ―fake‖ AI, or the use of audio and visual cues to suggest 

agent activity.  For example, when a squad of soldiers is advancing, the game may generate a cue like 

―I’m moving. Cover me!‖  Similarly, when a grenade falls near an NPC in a squad, the game may 

generate a cue like ―Look out!‖ followed by the NPC’s trying to escape.  In these instances, the agents are 

reacting to their environments rather than the cues; they only appear to follow the cues because the cues 

are in sync with their goals.  Another example of ―fake‖ AI is a call by a squad’s last member for 

reinforcements.  While this call has no effect on calling troops, the player will encounter more troops later 

in the level, making it appear as though the AI responded to the NPC’s request for reinforcements. 

Game Balancing 

Controlling game difficulty, also called game balancing, is an important gameplay issue.  A 

player will not enjoy a game if it is too easy or too hard.  Static difficulty levels (easy, medium, hard, 

etc.), which game developers normally use, can make parts of the game too easy and others too hard.  

Some game balancing systems can give players or non-player characters (NPC) an unfair advantage. A 
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common example of this is the ―rubber band‖ effect found in many racing games where the last place car 

is rocketed forward to near the front (Hunicke, 2005).  Other games use a ramping technique where the 

game steadily gets harder as it goes on.  However, increasing the difficulty faster than a player’s learning 

curve can frustrate the player.  These considerations have led to the study of dynamic difficulty 

adjustment (DDA). 

Difficulty adjustments can take different forms.  A game can switch between different policies for 

how to challenge players.  For instance, a game could switch from a comfort policy that attempts to ―keep 

players feeling challenged, but safe [by] padding their inventory‖ (Hunicke, 2005) to a discomfort policy 

that challenges players by limiting item drops.  Another way to adjust difficulty is through more direct 

intervention.  Items like weapons or health packs could be added to the playfield.  The player’s hit points 

or attack strength could be modified.  Enemies’ hit points, weapons, spawn locations, or accuracy could 

all be modified.  A combination of these methods is normally used to adjust difficulty. 

Hunicke (Hunicke, 2005) has developed a DDA system that regulates a game’s mechanics, 

dynamics, and aesthetics.  Mechanics are player interactions with the environment.  Health, ammunition, 

and weapons would all be part of a game’s mechanics.  Dynamics are player movements between 

encounters.  The rate at which the player finds new weapons or power-ups is part of a game’s dynamics.  

Aesthetics are how the mechanics and dynamics create difficulty.  Increasing a game’s difficulty as it 

progresses is a strategy for managing a game’s aesthetics. 

Hunicke integrated her system, the ―Hamlet System‖ (Hunicke, 2005), into Valve Software’s 

Half Life game engine.  The Hamlet System is divided into two parts: evaluation of a player’s 

performance and adjustment of a game’s settings.  The system evaluates players based on the rate at 

which they lose health.  The amount of health a player loses over a set period fits a Gaussian probability 

distribution.  ―During combat, Hamlet records the damage…each enemy does to the player‖ (Hunicke, 

2005).  From this data the Hamlet System can determine the probability the player will die in that 

encounter.  If the player’s probability of death rises above 40%, the Hamlet System intervenes.  It 

increases the player’s health by 15 points every 100 ticks. 
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Hunicke experimented to see how adjustments affected player performance, if players noticed 

adjustments, and if adjustments affected ―the player’s enjoyment, frustration, or perception of game 

difficulty‖ (Hunicke, 2005).  Players playing the unadjusted and adjusted games died an average of 6.4 

times and 4.0 times in the first 15 minutes, respectively.  If repeated death is equated with frustration, then 

these adjustments should reduce player frustration.  In a short survey given following gameplay, expert 

players rated the adjusted game more enjoyable while novice players rated them equally.  The survey also 

found no correlation between a player’s perception of game difficulty and whether the game difficulty 

was adjusted.  This means that the game was made less frustrating and more enjoyable without the player 

feeling as though the game was ―fixed‖ in their favor.  Hunicke concludes that if a small change like 

manipulating health could improve a game, then a well designed DDA system has the potential to greatly 

improve a game. 

Another method for handling DDA is proposed by Andrade et al. (Andrade, Ramaloh, Santana, & 

Corruble, Challenge-Sensative Action, 2005) (Andrade, Ramaloh, Santana, & Corruble, Automatic 

Computer Game Balancing, 2005).  Andrade et al. integrated their DDA system into a fighting game 

called Knock’Em which is similar to Midway’s Mortal Kombat.  Like Hunicke’s system, Andrade et al.’s 

Reinforcement Learning (RL) system uses a difficulty calculation to manipulate the game.  However, 

fighting games differ from first-person shooters like Half Life: they do not provide weapons or health 

packs.  The authors rejected two strategies for DDA.  Dynamic scripting can become too complex in large 

systems while genetic algorithm techniques do not adapt quickly to a player’s skill level.  

Andrade et al.’s technique of choice, Reinforcement Learning, is ―characterized as the problem of 

learning what to do (how to map situations into actions) so as to maximize a numerical reward signal‖ 

(Andrade, Ramaloh, Santana, & Corruble, Challenge-Sensative Action, 2005).  RL is based on a Markov 

Decision Process (MDP) involving a series of reward values r(s, a), where an entity receives a reward for 

an action a in a state s.  The RL algorithm attempts to maximize an entity’s reward value by choosing the 

correct action based on its current state.  The algorithm uses memories of past choices and the results of 

those choices to choose the best action to maximize reward. 
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The authors discuss two main difficulties with RL.  The first is getting the game’s AIs to play at 

the same level as the player at the start of the game.  To do this, Andrade pre-trained AIs by having them 

play against themselves to develop basic character policies.  Once the agents start playing against the 

player they refine their play style to complement the player’s style and skill.  The second difficulty is 

choosing what to do once the optimal policy has been learned.  Directing agents to randomly choose 

actions could result in nonsense actions (like punching when the opponent is on the other side of the 

screen).  Directing agents to choose only optimal actions would make the agent impossibly difficult.  

Instead, the AI agent must choose ―progressively sub-optimal actions until the agent's performance is as 

good as the player’s‖ (Andrade, Ramaloh, Santana, & Corruble, Challenge-Sensative Action, 2005) or 

more optimal actions if the game becomes too easy. 

Andrade tested his RL agents against agents that randomly choose actions and agents that always 

choose the optimal action.  He found that the fights normally ended with a small difference in health 

points, ―meaning that both fighters had similar performance‖ (Andrade, Ramaloh, Santana, & Corruble, 

Challenge-Sensative Action, 2005)—that is, the RL AI agents closely matched their opponent’s skill 

level.  Andrade is currently in the process of testing his RL AI agents against real people to see if the 

results stand. 

Ant Colonization Optimization Overview 

Ant Colonization Optimization (ACO) is a search algorithm that simulates ant foraging behavior 

(Coltorti & Rizzoli, 2007).  The algorithm functions by randomly sending out artificial ―ants‖ into a 

search space, starting from random points in the search space or at a central hub.  Each ACO ant that finds 

a solution mimics the behavior of a biological ant by leaving a simulated chemical (pheromone) trail on 

its path home.  This path’s strength is proportional to the solution’s success; shorter solutions yield 

stronger trails.  The next iteration of ACO ants accounts for pheromones when choosing a direction to 

travel.  Simulated pheromones, like real pheromones, weaken over time, causing less-optimal paths to be 
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abandoned for better paths.  More extensive searches tend to find better, if not necessarily optimal, 

solutions. 

ACO Case Studies 

ACO has been adapted to a variety of NP-hard problems.  One successful use of ACO by Coltorti 

and Rizzoli (Coltorti & Rizzoli, 2007) used the ANTROUTE algorithm to optimize vehicle routing 

problems.  A vehicle routing problem consists of multiple clients like grocery stores that need to be 

serviced by vehicles.  An optimal solution serves all clients and minimizes resource consumption while 

respecting operational constraints.  Examples of these constraints would be ―the driver’s maximum 

working time, and minimizing the total transportation cost‖ (Coltorti & Rizzoli, 2007).  

ANTROUTE is divided into two stages (Coltorti & Rizzoli, 2007). During the first stage, each ant 

independently finds a solution.  During the second stage, pheromone trails are decreased due to 

evaporation and increased based on the ants’ paths.  ANTROUTE searches for solutions using two 

separate colonies of ants: one that minimizes driving time and another that minimizes vehicles.  By 

combining the solutions, paths were found that would minimize the number of vehicles needed and the 

total distance travelled. 

Coltorti and Rizzoli used ANTROUTE to calculate a distribution strategy for a supermarket chain 

in Switzerland that distributes goods to over six-hundred stores.  The search space consisted of a graph 

whose vertices modeled the chain’s stores and delivery hub and whose edges modeled transportation 

routes.  Distances between vertices were calculated using average driving speeds determined from real 

world data.  Coltorti and Rizzoli also modeled overheads like the time needed to hook a trailer to a truck 

and to unload pallets at a destination.  Their main constraint was that all routes had to be competed in one 

day. 

ANTROUTE initially proposed a strategy that cut the number of routes in use from 2056 to 1614 

and increased truck space used from 77% to 98%.  The solutions were found to be infeasible, due to its 

failure to return trucks to their starting points for next-day use.  The algorithm was then modified to use 



19 

 

petal shaped routes, similar to those used by human planners.  The modified algorithm’s solutions used 

1807 routes with a trucking load of 87%.  ANTROUTE, moreover, took five minutes to do what took the 

human planners close to three hours. 

Coltorti and Rizzoli used ANTROUTE to compute routes for an Italian company with multiple 

delivery hubs.  Goods moved from manufacturers to hubs, and thence to shops.  Italian laws required all 

pick-ups to be made before any deliveries, and forbade orders from being split between tours.  Deliveries 

were handled by a subcontractor with trucks deployed throughout Italy.  This allowed trucks to start at the 

first pickup point instead at a delivery hub and to be used without concern for their numbers.  So, 

ANTROUTE was modified so it only had one colony. 

Coltorti and Rizzoli determined that the algorithm did about as well as human planners if the 

problem complexity was low, but outperformed people for routes involving large numbers of orders and 

high complexity.  On average, ANTROUTE reduced the number of routes needed by ten and increased 

the efficiency by more than 4%. 

Coltorti and Rizzoli also used ANTROUTE to schedule emergency winter deliveries for a fuel oil 

distribution company whose customers that ran out of fuel.  The challenge in this case was the need to 

schedule trucks that were already delivering fuel to other customers.  To support new orders, the day was 

divided into time slices.  In between these slices, filled orders were removed and new orders were added.  

At each time slice ANTROUTE was rerun and new routes were planned.  After testing having a number 

of time slices between 5 and 200 it was determined that 25 time slices minimized travel time. 

As with Coltorti and Rizzoli, initial ACO implementations were designed to find strategies for 

traversing closed graphs.  ACO algorithms have since been adapted to traverse continuous search spaces.  

A continuous search space is a graph that has an infinite number of nodes and edges.  This scenario 

models real-world searches for food, where there are infinitely many paths for ants to follow and 

directions to take.  One algorithm for continuous search spaces by França et al (França, Coelho, Von 

Zuben, & Attux, 2008) is called Multivariate Ant Colony Algorithm for Continuous Optimization 

(MACACO). 
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França et al.’s work combines and extends two earlier ant search algorithms.  The first, CACS 

(Continuous Ant Colony System), was proposed in 2004 by Pourtakdoust and Nobahari.  In CACS, ―the 

discrete pheromone probabilistic function is replaced by a Gaussian probability density function (PDF)‖ 

(França, Coelho, Von Zuben, & Attux, 2008).  During each iteration of the search, the ants modify the 

distribution’s mean and variance.  Initially, the variance is set to three times the range of the variables.  

The variance is then modified at run time, using ―a weighted average of the distance between each 

individual in the population and the best solution found so far‖ (França, Coelho, Von Zuben, & Attux, 

2008).  The method’s advantages include the method’s use of only one parameter—the number of ants—

making successive generations of ants easier to generate.  However, the algorithm converges to a single 

local optimum, leading to premature convergence on an optimum value.   

The second search algorithm, ACOR, was proposed by Socha and Dorigo in 2006.  In ACOR, 

solutions are ―built according to an archive of the n best solutions found so far‖ (França, Coelho, Von 

Zuben, & Attux, 2008).  Like CACS, ACOR uses a Gaussian PDF.  However, ACOR has multiple PDF’s: 

one for each of the n best solutions.  The ants find new solutions by following the pheromone trails.  The 

solutions are input into the archive and sorted by fitness.  Solutions that are worse than the nth best 

solution so far are deleted and the process is repeated.  The advantage of using multiple PDFs is there is a 

much lower occurrence of premature convergence.  But, maintaining multiple PDFs is computationally 

expensive. 

MACACO exploits relationships between variances in multiple variables (or dimensions) to 

reduce the size of the search space explored by the algorithm.  In a two-dimensional space, two Gaussian 

distributions plotted against each other on a plane will form a circle.  A multivariate distribution, on the 

other hand, will form an ellipse, which encompasses significantly less area than the circle. Once this 

ellipse’s shape has been calculated, it can be translated to overlay the portion of the search space which 

contains the current best solution resulting in a more focused search. 

To implement MACACO’s search algorithm, a covariance matrix Σ is created with center µ.  

Then, a vector x is created for each node containing the probabilities for every variable that is a search 
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parameter.  Next, a matrix of the normalized eigenvectors of the covariance matrix φ is created as well as 

a diagonal matrix Λ containing the eigenvalues.  Next, a value Q is defined as Q= Λ
1/2

 φ.  Each vector x is 

then replaced by a vector y where y=Q*x+µ.  The weights in y are used to shape the Gaussian 

distributions at the nodes.  After each iteration, the covariance matrix is recalculated using the best 70% 

of the solutions. 

França tested MACACO against CACS and ACOR on six benchmark problems.  Even though 

MACACO ―demands the calculation of the eigenvectors and eigenvalues of a correlation matrix at each 

iteration‖ (França, Coelho, Von Zuben, & Attux, 2008), it was, on average, no worse than about half as 

fast as CACS, as well as 10 times faster than ACOR.  On average, MACACO also found closer to 

optimal solutions than CACS or ACOR on four of the six benchmarks.  França concludes that MACACO 

improves on ACOR.  He also concludes that MACAO usually improves on CACS, since it typically 

produces better results for a small additional computational cost. 

The ACO algorithm has also been adapted to play the video game Tetris.  Tetris is a good 

candidate for ACO because ―it is NP-complete to maximize the number of rows removed while playing 

the given piece sequence‖ (Chen, Wang, Wang, Shi, & Gap, 2009).  An implementation of an ACO 

algorithm was proposed by Chen et al (Chen, Wang, Wang, Shi, & Gap, 2009).  Chen’s algorithm selects 

the best move based on a value function which is run on ―all possible subsequent game boards‖ (Chen, 

Wang, Wang, Shi, & Gap, 2009).  This value function considers sixteen parameters, including the 

position of the highest hole, the number of blocks above the highest hole, and the number of potential 

lines.  Chen’s algorithm scans a list of Tetronimos and positions them according to their optimal values.  

The algorithm also uses a dynamic heuristic in conjunction with the pheromone evaporation rate to 

prevent premature convergence. 

Chen’s algorithm shows promise compared to some algorithms for playing Tetris.  It completed 

an average of about 7000 lines per game with a maximum of over 17,000 lines.  Its performance is 

however overshadowed by the Noisy Cross Entropy method, which had a maximum of almost 350,000 
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Fig 4. A 4x4 BMSN (Melo, 2009) 

 

lines in one game, and a genetic algorithm that had a maximum of almost 600,000 lines.  Chen suggests 

that an exponential value function instead of a linear value function could improve performance. 

Melo used a multi-colony ACO to solve a node placement problem (NPP) (Melo, 2009).  The 

goal of an NPP is to minimize the average weighted hop distance between all nodes in a graph.  Melo’s 

problem was set on a Bidirectional Manhattan Street Network (BMSN): a graph where every node is 

connected to four other nodes, using weighted edges that represent communication paths, together with 

the amount of traffic that flows along each edge (See Fig. 4).  Intuitively, minimizing the average 

weighted hop distance corresponds to optimizing communications across the network by minimizing 

message traffic throughout the network. 

Melo’s multi colony approach avoids premature convergence while also avoiding more 

computationally intensive ACO implementations.  Each of Melo’s colonies has the same number of ants, 

runs for the same number of iterations, and shares a common heuristic function.  Each colony has a 

unique pheromone trail and records its own best performance.  During each of the algorithm’s iterations, 

each hive finds its current best solution.  It then tries to improve on that solution using a local search.  The 

algorithm then determines the best and worst colony.  If the difference between the best and worst colony 

is significant enough then the best colony path is used to lay pheromone for the worst colony. This 

process is called a trail migration.  This allows the colonies to explore more of the graph while focusing 

on the graph’s more promising areas. 
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In experimentation, Melo found that more using colonies produced better solutions.  He tested his 

algorithm on 4x4, 8x8, and 16x16 BMSNs.  As the BMSN got larger, the ACO solutions diverged from 

the optimal solutions.  Melo also noted that trail migrations are more frequent during the algorithm’s 

earlier iterations because the pheromone trails are not yet well established. 

Pinto and Barán used ACO algorithms to solve multiobjective multicast routing problems (Pinto 

& Barán, 2005).  A multicast ―consists of simultaneous data transmission from a source node to a subset 

of designation nodes in a computer network‖ (Pinto & Barán, 2005).  Multicast is used to implement 

services like TV transmissions and teleconferences, both of which are offered with quality of service 

(QoS) guarantees.  When issuing a multicast a network must consider QoS along with load balancing and 

network resource utilization.  So, any path optimized over a network must account for all of these 

considerations. 

Because multicast routing problems attempt to simultaneously optimize different, conflicting 

parameters, they have no single solution.  To assure converge to a single optimal solution, these 

parameters must be totally ordered.  

Pinto and Barán adapted two algorithms to solve the multicast routing problem.  The first, the 

Multi-Objective Ant Colony Optimization Algorithm (MOACS), places all ants at one source node.  

From there the ants randomly traverse the grid until they find a solution.  Each ant that finds a solution 

leaves a pheromone trail to that solution. The algorithm defines λ values to represent the relative 

importance of the different parameters.  These λ values help determine which path is the best path and 

what strength of pheromone to leave on the solutions.  Stronger pheromones are left on superior solutions 

and weaker pheromones are left on inferior solutions. 

The second algorithm, Max-Min Ant System (MMAS), uses each iteration’s best solution to 

update the pheromone trail.  Pheromone trails are initialized with a high value to ensure high exploration 

at the start of the algorithm.  As in MOACS, λ values determine the relative influences of the parameters. 
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Fig 5. Gene, Chromosome, and Network Relationship (Pinto 

& Barán, 2005) 

 

The authors contrasted MOACS and MMAS with the Multiobjective Multicast Algorithm 

(MMA), an evolutionary algorithm that has previously been shown to solve a multiobjective multicast 

routing problem.  Genes are built from random paths and chromosomes are built from the genes (See Fig. 

5).  Chromosomes are compared based on a fitness algorithm and new genes are built from combinations 

of the most fit genes along with some random mutation. 

A comparison of the three algorithms on multiple network topologies determined that MOACS 

and MMAS found more solutions (30 and 12 respectively) whose parameters were within acceptable 

range than MMA (six solutions).  However, the MMA solutions dominate several of the solutions of 

MOACS and MMAS, meaning MMA finds very good solutions.  On average, MOACS had superior 

performance because it averaged 65% undominated solutions compared to MMAS which averaged 13.5% 

undominated solutions and MMA which only averaged 10% undominated solutions. 

Based on their results, Pinto and Barán concluded that MOACS and MMAS are viable algorithms 

for solving multiobjective multicast routing problems with MOACS being the better of the two. 
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Experimental Overview 

The first task in the process of integrating ACO into games was to show proof of concept, i.e., 

show that pheromone trails could be placed on a grid and ―ants‖ could be made to follow them.  This was 

accomplished through the use of a simple simulation.  A grid was set up with one square marked as a goal 

and a different square marked as a source.  One hundred ―ants‖ started at the source and each moved in a 

random direction.  When an ―ant‖ moved onto the goal square it was removed from the simulation and 

trails were added around the goal pointing towards it.  In Figure 6, the green squares represent the ants 

which are searching for the goal, marked in pink.  When one of the ants reaches the goal it releases a 

pheromone trail (blue) which other ants could follow.  Over time the strength of the trail would decrease 

until it would fade away completely.  After several trials, it was apparent that ―ants‖ would follow the 

pheromone trails when they were active.  Because these initial tests were successful, the next step was to 

integrate pheromone trails into a simple game. 

Ant Hunter was developed to demonstrate the utility of pheromone trails in game AI.  Ant Hunter 

was written in C++.  The logical structure consists of six classes, two structs, several free functions, and a 

main driver function.  It has 1772 lines of code including white space and comments.  Graphics are 

 

Fig 6. Initial Simulation 
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r = random num between 1-10 

if (r < pheromone strength at enemy 

position) 

{ 

 move in direction of pheromone  

} 

else 

{ 

 move in random direction 

} 

Algorithm 1 Enemy Movement 

handled using OpenGL with the glut32.dll library.  OpenGL is also used to manage keyboard I/O and run 

the AI tick at set time increments. 

In Ant Hunter the player is an orange square who attempts to kill the enemy purple squares.  

Enemies in Ant Hunter have a very simple two-state AI.  When an enemy is close to a player it is in the 

attack state.  While in the attack state an enemy will move directly towards the player.  If the player gets 

too far away, an enemy will switch to the search state.  In the search state, enemies randomly move 

around the screen unless they are moving over a pheromone trail.  Enemies that are moving over a 

pheromone trail have a chance of following it depending on its strength (see Algorithm 1).  When an 

enemy gets close enough to the player it will switch to the attack state. 

When an enemy is killed it releases a pheromone trail. Each pheromone has a strength value and a 

direction value.  Strength can range from 0-10 inclusive and the direction can be up, down, left, right, and 

half way between each of those.  A killed enemy releases a trail of strength 9 in the 8 different directions 

all pointing towards the point where the enemy was killed in an effort to draw in other enemies to attack 

the player (see Fig 7).  The more recent a trail is the darker its color and the more likely an enemy is to 

follow it.  Over time, pheromone trails fade unless they are reinforced by the deaths of other enemies.    

Figure 7 demonstrates the lifecycle of a pheromone trail. 

Enemies also release pheromone trails when they switch from the search state to the attack state.  

While an enemy moves around during the attack state it keeps track of its position history.  When an 

enemy switches from search to attack, the stored movements are turned into a pheromone trail. 
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Fig 7. Pheromone Lifecycle 
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int position x 

int position y 

int scale factor 

 

pheromone grid x = position x / scale factor 

pheromone grid y = position y / scale factor 

Algorithm 2 Position to Pheromone Coordinate 

The environment of Ant Hunter consists of two grids: the position grid and the pheromone grid.  

The position grid uses pixels as positions.  This allows for simple collision detection based on the center 

position of an object and its size.  The pheromone grid is essentially laid over the position grid.  Not every 

position has its own unique node on the pheromone grid.  If this were the case, the effect of pheromones 

would be very limited.  Instead, multiple positions are tied to one node of the pheromone grid. 

By assigning a scale factor between the two grids and using integer division it is possible to easily 

transform a position to a node on the pheromone grid (see Algorithm 2).  By this method, a range of 

positions can be linked to a single pheromone trail and thus an enemy will follow a pheromone trail if he 

is anywhere in that range. 

The player in Ant Hunter is controlled via the keyboard.  The player moves using the standard 

WASD keyset and fires using the arrow keys.  The goal of the player is to kill as many enemies as 

possible.  Enemies respawn over time after they are killed.  If an enemy comes into contact with the 

player the player dies.  When the player dies all of the pheromone trails are removed, the enemy is killed, 

and the player is instantly moved to a random new location. 

The goal of the experiment was to determine whether or not pheromone trails could be used to 

affect the difficulty of the game.  To test this, a simulated player (sim-player) was created to play the 

game.  The simulated player used a simple AI algorithm.  At every tick it moves in a random direction.  It 

also shoots lasers at any enemies who were in a direct line with its position — up, down, left, or right — 

plus or minus five pixels.  The result of this is that the sim-player has better-than-human reflexes. 

The experiment was conducted with three separate test groups: one with long pheromone trails, 

one with medium length pheromone trails, and one with no pheromone trails.  An individual simulation 

consisted of allowing the sim-player to play the game for five minutes at four times normal game speed.  
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After each minute the number of enemies killed and the number of player deaths was output to a unique 

log file.  A total of fifty simulations were run for each test group. 
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Kills Deaths K:D

Long Trails 4000 1907 2.10

Short Trails 3103 1402 2.21

No Trails 1180 587 2.01

Table 1. Test Group Totals 

Results and Analysis 

After running the simulations, the results show a significant difference in the number of enemies 

killed and the number of player deaths between 

the three test groups (see Table 1).  

The first thing to note is that the sim-

player was equally effective at killing enemies 

at all three pheromone levels.  This is demonstrated in two ways.  The first is that the composite kill-to-

death ratio was close to 2.1 for all three test groups. The second is that the kill- to-death ratio becomes 

more consistent the more enemies the sim-player has to face.  This is demonstrated by the decreasing 

variance as the number of kills and deaths increases.  The variances were 1.21, 0.44, and 0.29 for no 

trails, short trails, and long trails respectively times (see Appendix B for complete statistical analysis).  

This is because the sim-player has perfect reflexes — far better than any human player could have.  This 

means that that difficulty cannot be measured based on the performance of the sim-player. 

It is clear that from the data that the sim-player will die more when pheromone trails are used as 

opposed to when they are not.  With long pheromone trails the sim-player died an average of 38.1 times 

per simulation, with short trails it died an average of 28.0 times, and with no trails it died an average of 

11.7.  This can be attributed to the fact that the pheromone trails cause the sim-player to tend to face more 

enemies during a trial. 

 The sim-player has no logic for running away from an enemy.  So, every interaction that the sim-

player has with an enemy ends with either the death of the enemy or the sim-player.  Therefore the sum of 

the kills and deaths for a trial is the number of enemies the sim-player had to interact with during a trial.  

Unlike with the sim-player, the more enemies a human player has to face the more likely they are to make 

a mistake. When a player is more likely to make a mistake, a game is harder.  Therefore it is reasonable to 

say that the more enemies the sim-player has to face the harder the game is. 
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Looking at the results for the three test groups it is clear that the longer the pheromone trail was, 

the more enemies the player had to face (see Fig. 8).  This means that the longer pheromone trails were 

successful in drawing more enemies to the player.  As noted before, more enemy interactions are 

equivalent to a harder game, so, in this sense, difficulty was successfully controlled by manipulating the 

parameters of the pheromone trails. 

It can also be concluded that pheromone trails are an effective form of communication between 

two separate AI agents.  When an enemy dies it relays the current position of the player to other nearby 

enemies via the pheromone trails.  Without this, the other enemies would continue to be ignorant of the 

player’s position.  The pheromone trails allow communication with nearby enemies using a memory-

expensive method as opposed to a computationally-expensive method.  An enemy simply adds 

pheromones to the pheromone grid instead of having to determine which other enemies are within a 

certain distance — a process which would require a distance calculation as well as other logic. 

Pheromone trails do not need to be limited to their functionality in Ant Hunter.  Pheromone trails 

could be used to relay information about the location of any important object in a gaming environment.  

They could also be used to issue commands from one AI agent to another (like a squad commander giving 

commands to his soldiers).  There are many possible uses for pheromone trails and these should be 

explored. 
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Future work with Ant Hunter could include running trials with human players as opposed to the 

sim-player.  This could confirm that human players have a harder time when facing more enemies and 

will have more deaths than when they face fewer enemies.  Another option would be making the sim-

player more closely model human behavior.  This removes the problem of people getting better at the 

game over multiple trials.  This could be done by adding a ―stress level‖ to the sim-player so it would 

become less accurate when it has to simultaneously face multiple enemies. The use of pheromone trails in 

a 3D environment could also be explored.  Pheromone trails in Ant Hunter operate in two dimensions in 

eight set directions.  To operate in a 3D environment, the direction vector would need to be able to point 

in any direction and would also have to account for terrain in the game environment. Lastly, the 

pheromone trail system could be integrated into a more complex game to see if it is scalable to a larger 

gaming environment.   
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Appendix A: Data Tables 

Long Pheromone Trails 

Trial 
Number of 

Kills 
Number of 

Deaths K:D   Trial 
Number of 

Kills 
Number of 

Deaths K:D 

1 42 14 3.000   26 69 42 1.643 

2 42 21 2.000   27 80 35 2.286 

3 41 22 1.864   28 61 41 1.488 

4 55 28 1.964   29 86 53 1.623 

5 112 40 2.800   30 123 47 2.617 

6 41 23 1.783   31 114 52 2.192 

7 67 36 1.861   32 67 41 1.634 

8 50 26 1.923   33 77 32 2.406 

9 42 19 2.211   34 70 38 1.842 

10 54 39 1.385   35 118 57 2.070 

11 98 53 1.849   36 97 53 1.830 

12 74 40 1.850   37 125 48 2.604 

13 95 36 2.639   38 99 47 2.106 

14 85 39 2.179   39 108 40 2.700 

15 24 16 1.500   40 103 41 2.512 

16 70 27 2.593   41 59 38 1.553 

17 78 46 1.696   42 80 49 1.633 

18 53 16 3.313   43 101 47 2.149 

19 68 35 1.943   44 118 58 2.034 

20 65 32 2.031   45 78 27 2.889 

21 83 43 1.930   46 142 64 2.219 

22 66 30 2.200   47 65 41 1.585 

23 73 32 2.281   48 81 21 3.857 

24 90 25 3.600   49 82 46 1.783 

25 132 57 2.316   50 97 54 1.796 

         TOTAL 4000 1907 2.098 
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Short Pheromone Trails 

 
Trial 

Number of 
Kills 

Number of 
Deaths K:D   Trial 

Number of 
Kills 

Number of 
Deaths K:D 

1 39 14 2.786   26 75 31 2.419 

2 144 46 3.130   27 34 22 1.545 

3 51 21 2.429   28 71 36 1.972 

4 85 42 2.024   29 61 45 1.356 

5 83 32 2.594   30 117 41 2.854 

6 87 27 3.222   31 12 7 1.714 

7 53 27 1.963   32 59 34 1.735 

8 73 25 2.920   33 115 59 1.949 

9 21 10 2.100   34 50 10 5.000 

10 97 43 2.256   35 86 31 2.774 

11 74 34 2.176   36 53 26 2.038 

12 49 26 1.885   37 71 45 1.578 

13 22 17 1.294   38 75 39 1.923 

14 68 34 2.000   39 69 32 2.156 

15 75 28 2.679   40 51 45 1.133 

16 42 18 2.333   41 43 27 1.593 

17 68 27 2.519   42 89 42 2.119 

18 82 27 3.037   43 70 37 1.892 

19 39 13 3.000   44 32 15 2.133 

20 31 13 2.385   45 46 20 2.300 

21 65 28 2.321   46 71 28 2.536 

22 20 18 1.111   47 10 7 1.429 

23 25 13 1.923   48 45 18 2.500 

24 36 22 1.636   49 68 24 2.833 

25 99 41 2.415   50 102 35 2.914 

         TOTAL 3103 1402 2.213 
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No Pheromone Trails 

Trial 
Number of 

Kills 
Number of 

Deaths K:D   Trial 
Number of 

Kills 
Number of 

Deaths K:D 

1 21 15 1.400   26 15 8 1.875 

2 9 3 3.000   27 41 24 1.708 

3 18 16 1.125   28 16 6 2.667 

4 25 10 2.500   29 15 10 1.500 

5 18 17 1.059   30 23 9 2.556 

6 22 11 2.000   31 26 14 1.857 

7 20 11 1.818   32 24 16 1.500 

8 30 10 3.000   33 34 11 3.091 

9 21 12 1.750   34 13 6 2.167 

10 16 18 0.889   35 31 7 4.429 

11 27 10 2.700   36 17 7 2.429 

12 31 10 3.100   37 32 12 2.667 

13 17 7 2.429   38 34 22 1.545 

14 16 24 0.667   39 16 9 1.778 

15 24 11 2.182   40 23 17 1.353 

16 22 4 5.500   41 11 8 1.375 

17 20 8 2.500   42 29 18 1.611 

18 26 16 1.625   43 15 7 2.143 

19 24 14 1.714   44 15 3 5.000 

20 19 9 2.111   45 30 15 2.000 

21 33 17 1.941   46 26 10 2.600 

22 41 21 1.952   47 39 6 6.500 

23 22 9 2.444   48 23 10 2.300 

24 20 14 1.429   49 35 16 2.188 

25 31 11 2.818   50 24 8 3.000 

         TOTAL 1180 587 2.010 
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Appendix B: Graphical Data Summaries 

 

 

  

Data Summary for Long Trails 
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Mean
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1st Q uartile 64.000

Median 78.000

3rd Q uartile 98.250

Maximum 142.000

72.437 87.563

68.672 85.328

22.229 33.161

A -Squared 0.28

P-V alue 0.617

Mean 80.000

StDev 26.611

V ariance 708.163

Skewness 0.256758

Kurtosis -0.377602

N 50

Minimum 24.000

A nderson-Darling Normality  Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kills

Graphs generated in Minitab 15 
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6050403020

Median

Mean

4240383634

1st Q uartile 27.750

Median 39.500

3rd Q uartile 47.000

Maximum 64.000

34.642 41.638

35.000 41.328

10.282 15.339

A -Squared 0.29

P-V alue 0.586

Mean 38.140

StDev 12.309

V ariance 151.511

Skewness -0.103586

Kurtosis -0.678581

N 50

Minimum 14.000

A nderson-Darling Normality  Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Deaths
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Median

Mean
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1st Q uartile 1.7929

Median 2.0329

3rd Q uartile 2.4327

Maximum 3.8571

2.0030 2.3075

1.8628 2.2035

0.4475 0.6676

A -Squared 1.25

P-V alue < 0.005

Mean 2.1552

StDev 0.5358

V ariance 0.2870

Skewness 1.23052

Kurtosis 1.63206

N 50

Minimum 1.3846

A nderson-Darling Normality  Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kill to Death Ratio
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Mean
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Median 66.500

3rd Q uartile 76.750

Maximum 144.000

54.009 70.111

50.672 71.000
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A -Squared 0.27

P-V alue 0.669

Mean 62.060

StDev 28.330

V ariance 802.588

Skewness 0.404962

Kurtosis 0.314960

N 50

Minimum 10.000

A nderson-Darling Normality  Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kills

 

  

Data Summary for Short Trails 
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6048362412

Median

Mean
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1st Q uartile 18.000

Median 27.000

3rd Q uartile 36.250

Maximum 59.000

24.694 31.386
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A -Squared 0.28
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95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median
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Summary for Deaths
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Mean
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A -Squared 0.48
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Skewness 0.444432

Kurtosis -0.347826

N 50
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A nderson-Darling Normality  Test

95% C onfidence Interv al for Mean
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95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kills

 

  

Data Summary for No Trails 
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Median

Mean
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1st Q uartile 8.000

Median 10.500
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Maximum 24.000
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A -Squared 0.81

P-V alue 0.035
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StDev 5.098
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Summary for Deaths
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1.8444 2.4338
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95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kill to Death Ratio

 


	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2010

	Using Ant Colonization Optimization to Control Difficulty in Video Game AI.
	Joshua Courtney
	Recommended Citation


	tmp.1392744965.pdf.ClTAl

