
East Tennessee State University
Digital Commons @ East Tennessee State University

Undergraduate Honors Theses Student Works

5-2010

Using Ant Colonization Optimization to Control
Difficulty in Video Game AI.
Joshua Courtney
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/honors

Part of the Software Engineering Commons

This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State
University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee
State University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Courtney, Joshua, "Using Ant Colonization Optimization to Control Difficulty in Video Game AI." (2010). Undergraduate Honors
Theses. Paper 147. https://dc.etsu.edu/honors/147

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fhonors%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fhonors%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=dc.etsu.edu%2Fhonors%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

1

Using Ant Colonization Optimization to Control Difficulty in

Video Game AI

Thesis submitted in partial fulfillment of Honors

By

Joshua Courtney

The Honors College

University Honors Scholar Program

East Tennessee State University

April 26, 2010

 Mr. Jeff Roach, Faculty Mentor

Dr. Martin Barrett, Faculty Reader

 Dr. Robert Beeler, Faculty Reader

2

3

Contents
Introduction .. 5

Review of Literature .. 7

Game Programming Basics .. 8

Fig 1. Avoidance Vectors .. 9

Fig 2. A Simple Finite State Machine .. 9

AI Case Studies .. 10

Fig 3. Sample Behavior Diagram (Isla, 2005) ... 11

Game Balancing ... 14

Ant Colonization Optimization Overview ... 17

ACO Case Studies ... 18

Fig 4. A 4x4 BMSN (Melo, 2009) ... 22

Fig 5. Gene, Chromosome, and Network Relationship (Pinto & Barán, 2005) 24

Experimental Overview ... 25

Fig 6. Initial Simulation ... 25

Algorithm 1 Enemy Movement ... 26

Fig 7. Pheromone Lifecycle ... 27

Algorithm 2 Position to Pheromone Coordinate .. 28

Results and Analysis .. 30

Table 1. Test Group Totals .. 30

Fig 8.Total Kills and Deaths .. 31

Bibliography .. 33

Appendix A: Data Tables ... 35

file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047691
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047692
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047694
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047698
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047699
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047701
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047702
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047703
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047704
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047706
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047707

4

Long Pheromone Trails.. 35

Short Pheromone Trails ... 36

No Pheromone Trails ... 37

Appendix B: Graphical Data Summaries ... 38

Data Summary for Long Trails .. 38

Data Summary for Short Trails .. 39

Data Summary for No Trails .. 39

file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047714
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047715
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20Stuff/Thesis%20Document.docx%23_Toc260047716

5

Introduction

Ant colony optimization (ACO) is an algorithm which simulates ant foraging behavior. When

ants search for food they leave pheromone trails to tell other ants which paths to take to find food. In

computer science, this has been adapted to many different problems including the traveling salesman

problem. The algorithm functions by randomly sending out artificial ―ants‖ from a hub into a search

space. Each ant finds a solution and then leaves an artificial pheromone trail along its path. The amount

of pheromones depends on the success of the solution, i.e., a better solution leaves a stronger pheromone

trail. The next iteration of ants takes the pheromones into account when choosing a direction to travel.

Pheromones also weaken over time so less-optimal paths are abandoned for more-optimal paths. The

result of many iterations is finding a good solution (although not necessarily the optimal solution as

finding an optimal solution is NP-hard (Coltorti & Rizzoli, 2007)).

ACO has been used to solve many different types of problems. Coltorti (Coltorti & Rizzoli,

2007) used ACO to solve vehicle routing problems. These problems involved supermarkets moving food.

The algorithm determined how to minimize driver time and cost while making sure all deliveries were

made on time. ACO has also been applied to Tetris by Chen (Chen, Wang, Wang, Shi, & Gap, 2009).

Chen created a value function which gave a value to the successfulness of placing a tetromino. Each time

a piece arrives, ―ants‖ crawl the grid of the game space and determine the path for the tetronimo to reach

the optimal position. By this method as many as 23,000 lines were removed in a game. França (França,

Coelho, Von Zuben, & Attux, 2008) used ACO to explore continuous search spaces. In França’s

algorithm, ants in each new generation are concentrated around the previous best solution. They explore

the area around the solution to try to improve it. The advantage is that a local optimal solution can be

found quickly. However, this can cause premature convergence because only one area of the search space

is examined at a time. Melo (Melo, 2009) attempted to avoid premature convergence through the use of

multiple colonies. At the end of each iteration, the optimal path determined by any colony is used to

6

adjust the other paths. Non-optimal paths are moved closer to the current optimal path. This causes more

independent searches of the optimal area.

There is no research indicating the use of ACO in video game Artificial Intelligence (AI).

Pheromone trails in ACO are essentially a way for independent ants to communicate with each other.

This style of communication can be incorporated into a game AI allowing separate AI agents to

communicate with each other. Pheromone trail communication can be implemented by having a

pheromone grid overlaying the game environment. Enemies can send out signals to other enemies via

pheromone trails that the other enemies can choose to follow these trails. Enemies can send out

pheromone trails when they see the player, when they die, or when some other desired condition is met.

By controlling the length and the strength of the trails left, one can control inter-agent communication.

The better the agents can communicate the better they will be able to accomplish their goal of defeating

the player. Therefore, by controlling the effectiveness of the communication between agents, one could

control the difficulty of the game.

7

Review of Literature

In order to avoid the extremes of frustration or boredom, a video game should challenge its

players without being excessively difficult. Historically, two strategies have been used for matching

game difficulty with a player’s skill level. The first, in player-versus-player games, is to trust players to

play against similarly skilled opponents and to match up opponents as best as possible. The second, in

player-versus-environment games, is to support multiple static difficulty levels and allow the player to

choose.

Creators of video games have devised two additional kinds of adjustments for managing a game’s

difficulty. The first involves controlling the scarcity of the environment’s resources that allow the player

to succeed. The second involves adjusting the quality of computer-managed opponents. Some newer

games use artificial-intelligence-like strategies for dynamically adjusting a game’s difficulty based on a

player’s skill level. The difference of dynamic difficulty control is that the environment’s resources or

the enemies’ quality (or both) is in a constant state of flux so as the player improves the game becomes

harder or as the player does poorly the game becomes easier.

A computer-generated opponent is known as an agent or an artificial intelligence (AI). Modern

games have complex AIs that include methods for carrying out actions and a controller for determining

which actions to perform. Controllers have been implemented as finite-state machines, hierarchical

decision trees, and goal oriented action programming, which uses a variation of the A* shortest-path

algorithm to find appropriate actions.

Ant Colonization Optimization (ACO) is a search algorithm that could find use in game

controllers that adjust to players’ levels of skill. The ACO algorithm is a type of shortest-path algorithm

that finds locally optimal solutions to a graph transversal problem. Artificial ants search a graph trying to

reach a certain point. When they reach their goal they release a pheromone trail which other ants have a

chance to follow.

8

ACO pheromone trails could be used by agents to pass information to other agents in a game

environment. By modifying the parameters for leaving a trail, the effectiveness of communication

between agents could be controlled. Since better communications between agents would make them

harder to defeat, managing the effectiveness of communication could be used to manage game difficulty.

Game Programming Basics

The task of realizing an AI for first-person shooter games—games where the player sees the

world through the main characters eyes and fights enemies using a variety of weapons—can be divided

into two main requirements. The first is to implement the AI’s actions, including looking for an enemy,

avoiding obstacles while moving, and targeting an enemy with a gun (Howland, 1999). The second is to

implement the AI’s decision-making processes, to choose which actions the AI should perform.

Action, the simpler of the two requirements, is typically implemented as two components. The

first, a weapons controller, models shooting, including the determination of the shots’ effects, like damage

(based on range and accuracy) and change in ammo. The other component models motion, including

searching for and pursuing enemies.

Searching, is commonly handled using A*, described by Nareyek as ―an improved version of

Dijkstra’s shortest-path algorithm‖ (Nareyek, 2004). A* functions by overlaying a graph over the game

map. The graph’s vertices are pre-determined waypoints defined by the programmer. The programmer

also defines paths between these waypoints as well as their distances. These paths are the graph’s edges.

When an agent wants to move it locates its nearest waypoint. From there, the A* algorithm finds the

shortest path between the starting waypoint and the waypoint closest to the agent’s destination. That path

is passed to the mover and the mover takes the agent to the destination. Once an enemy has been sighted,

pursuit is conducted by using the viewing field to keep the player in view.

9

Search
Attack

Enemy Found

Enemy Killed

Lose Sight of

Enemy

Fig 2. A Simple Finite State Machine

Obstacle avoidance, a concern that arises in searching and pursuit, can be managed by first

moving to an obstacle’s edge and then along it until the agent can again move straight towards its

destination. A better strategy adds an avoidance vector, which the algorithm associates with each

obstacle, to an agent’s current movement vector (see Fig. 1). The resulting path will curve around the

obstacle, because the goal vector is constantly tracking the goal. Obstacle avoidance algorithms act as an

intermediary between the nodes on an A* graph. A* gives the mover a set of goals to move to, but simple

obstacle avoidance algorithms handle any obstacles encountered between the nodes

The other major part of game AI, decision making, is typically implemented in one of several

ways. The most basic implementation strategy, a finite state machine (FSM) (Nareyek, 2004), is a graph

that characterizes every state that an AI agent can be in and all conditions for transitioning between states.

An example of a very simple FSM would be one with two states and three transition conditions (See Fig.

2). FSMs are implemented using if-then statements. The problem with FSMs is that they become

unmanageably complex with large and complex AIs.

Avoidance vector

Goal

vector
Resultant

movement vector

goal

Fig 1. Avoidance Vectors

10

Another simple way to handle decision making is with decision trees. To reach a decision, the AI

traverses the tree. The first level is very general with a question like ―Should I work on attack or

defense?‖ Based on the decision, the AI looks at the appropriate sub-tree. Eventually it descends to a

leaf node that specifies an action. Like FSMs, decision trees can be implemented with if-then statements.

Actual game AIs combine simple and advanced mechanisms to create believable and realistic

agents. Game AIs are effective if the game’s agents appear to have common sense (Isla, 2005). This

means knowing the right actions to do as well as how to do them and when to act. To establish the

appearance of common sense, the AI needs to exhibit coherency, transparency, runnability, and

understandability. Coherency is ensuring that behavior transitions are realistic and avoiding dithering,

i.e., quick switches among a collection of states. Transparency is giving an agent an appearance that

matches its current internal state, i.e. there should be some sort of graphical representation of an agent’s

state. Runnability is ensuring that the AI code can complete execution in the processor time allotted for

AI decision making. Understandability is ensuring that the system is simple enough so that the developer

can understand it. Also, the AI should also allow for character-to-character variety. Lastly, the AI needs

variability so it can be ―directed by the designers in service of the story‖ (Isla, 2005) through high-level

scripting.

AI Case Studies

Halo 2 has a complex AI that used multiple strategies to achieve realism (Isla, 2005). Halo 2’s

AI system uses a hierarchical FSM (HFSM) combined with a decision–tree-based structure called a

behavior diagram (see Fig. 3). An HFSM is an FSM whose levels are prioritized lists of states. Halo’s

AIs service states according to their priority. A correct ordering of these states helps to ensure that an AI

avoids nonsensical behaviors like trying to enter a vehicle if they are already in one.

11

Fig 3. Sample Behavior Diagram (Isla, 2005)

The problem with HFSMs is the occasional need to dynamically raise the priority of a lower

priority action. To allow a lower priority state to override a higher priority state, Halo 2 uses behavior

impulses: pointers that reference states in behavior diagrams. An example of a situation that would

require a temporary priority adjustment is directing an AI to enter a vehicle if the player gets in first.

Normally, fighting enemies would have a higher priority than finding a vehicle, but the

―player_in_vehicle‖ impulse should be ranked higher than the fighting behavior. The

―player_in_vehicle‖ impulse simply references the ―enter_vehicle‖ code, rather than duplicating it.

Impulses can be positioned at any level of a behavior diagram.

Behavior impulses can also arbitrarily execute small sections of code as well as behaviors. These

codes, for example, can be used to log data, display debugging information, or play sounds. This opens

up a wide range of uses for behavior impulses.

When a behavior diagram becomes large, determining which behaviors are relevant at a given

time takes considerable time. To reduce the time needed to assess behavior relevancy, behaviors are

tagged with the states in which they are relevant and temporarily removed from behavior diagrams when

they become irrelevant. For instance, when the agent is a gunner in a vehicle the ―throw grenade‖

behavior could be removed and the retreat option could be removed (if they are not the driver).

12

Another strategy for reducing the number of behaviors to check involves the use of stimulus

behaviors: behaviors that are dynamically added to and removed from behavior diagrams by an event

handler. An example of a stimulus behavior would be a ―flee_because_leader_died‖ impulse. This

impulse could be added to a behavior diagram by actor death event handler, and removed after an

appropriate period of time or a compensatory event, like the arrival of a new leader.

Although different Halo 2 AI’s have different behavior properties, AI agents are similar enough

to warrant the use of character hierarchies and inheritance to simplify implementation. For example, in

Halo 2 grunt majors take more punishment and do more damage than regular grunts, but exhibit identical

behavior. So, a grunt major inherits all the characteristics of a grunt but modifies the vitality and damage

statistics.

Another advanced AI system is the Goal Oriented Action Planning (GOAP) system developed by

Jeff Orkin for Monolith’s first person shooter, F.E.A.R. (2005) (Orkin, Agent Architectur, 2005) (Orkin,

Three States, 2006). In place of an elaborate FSM GOAP searches for actions that meet a goal. This

allows Non-Player Character (NPC) agents to handle unexpected situations.

Each agent is divided into sensors, working memory, a real-time planner, a blackboard, and

subsystems that manage actions like movement and aiming. Sensors gather information about the agent’s

environment. Some sensors are event driven (like recognizing damage) while others poll (like finding

tactical positions in the environment). The sensors store information gathered in the agent’s working

memory. The real-time planner watches for significant changes to working memory and responds by

reevaluating the agent’s goals and strategies for accomplishing those goals. If the goals are altered, the

planner adjusts the relevant variables on the blackboard. Finally, the subsystems check the blackboard for

changes at a set time interval and make any appropriate changes to their behavior.

The advantages of controlling agents using multiple components instead of a single FSM are

threefold. First, this decouples goals from actions, making it easier to associate different strategies for

achieving common goals with different units. The alternative, associating multiple strategies for

achieving a common goal with a single FSM, produces extremely complex FSMs. Second, this makes it

13

easier to define behavior incrementally, including defining what behaviors are prerequisites for other

behaviors and adding new actions late in the development cycle. Allowing the real-time planner to

determine the appropriate transitions at run time eliminates the need to work new actions into an FSM.

The third advantage is better support for dynamic problem solving. GOAP makes it straightforward to

create agents that work through a list of prioritized strategies until they try one that succeeds. This can

produce very realistic AI behavior. Orkin gives this example:

Imagine a scenario where we have a patrolling A.I. who walks through a door, sees the player, and starts

firing. If we run this scenario again, but this time the player physically holds the door shut with his body,

we will see the A.I. try to open the door and fail. He then re-plans and decides to kick the door. When this

fails, he re-plans again and decides to dive through the window and ends up close enough to use a melee

attack! (Orkin, Three States, 2006)

Opening the door was the highest priority option, but it failed, as did the second priority option of kicking

the door. The agent kept trying different methods until it found one that worked.

In F.E.A.R., agents interact with their environment through the use of smart objects. A smart

object is anything in the environment an agent can use to accomplish a goal. For instance, if an agent’s

goal is to get to a point on the other side of a closed door—a type of smart object—the agent would

interact with the door to open it. Nearby smart objects are detected by an agent’s sensors and placed in

the agent’s working memory. Since some actions may only be available when certain smart objects are

present, an agent must reevaluate its goals when new objects are placed into working memory. For

example, a weaponless agent that is chasing a player should pick up an assault rifle when it sees one and

then continue to chase. An agent could also use a smart object to make cover for itself by flipping a table

over and hiding behind it. The benefit of smart objects is that the programmer does not have to script the

agent to kick over the table; the agent does so because the action helps to accomplish the agent’s goal.

Action planning is done using the A* algorithm. A*, which was traditionally used for navigating

a playing field, has been adapted to find the best way to accomplish a goal. To do this, each action is

associated with a cost, with higher costs denoting less desirable actions. If a goal is treated as a

14

destination in a graph, possible actions as edges and resulting world states are intermediary nodes, A* can

find the most efficient path (i.e., sequence of actions) to reach the goal. If that path fails to accomplish

the goal, the edge for the inappropriate action can be removed from the search and the next best path can

be found. Paths that A* finds may need to be disqualified because some paths may be unavailable at

certain times. Certain actions may only be relevant if an agent is in a squad, or if the agent has no weapon.

GOAP also produces ghost behaviors or unintended behaviors that emerge in practice. One

example of this was NPCs’ looking at distant grenades, due to NPCs’ use of noise to find players.

Another ghost behavior was NPCs’ finding points of cover to a player’s side, which gave the appearance

of NPCs working together to flank a player. Ghost behaviors emerge in a GOAP system due to

unanticipated state transitions. An FSM would require a programmer to tell an agent how to act in the

presence of a grenade; with GOAP, defining the grenade as a danger and a disturbance causes the agent to

determine an appropriate—or, in the case of ghost behaviors, inappropriate—reaction at run time.

Another AI technique used in F.E.A.R. is ―fake‖ AI, or the use of audio and visual cues to suggest

agent activity. For example, when a squad of soldiers is advancing, the game may generate a cue like

―I’m moving. Cover me!‖ Similarly, when a grenade falls near an NPC in a squad, the game may

generate a cue like ―Look out!‖ followed by the NPC’s trying to escape. In these instances, the agents are

reacting to their environments rather than the cues; they only appear to follow the cues because the cues

are in sync with their goals. Another example of ―fake‖ AI is a call by a squad’s last member for

reinforcements. While this call has no effect on calling troops, the player will encounter more troops later

in the level, making it appear as though the AI responded to the NPC’s request for reinforcements.

Game Balancing

Controlling game difficulty, also called game balancing, is an important gameplay issue. A

player will not enjoy a game if it is too easy or too hard. Static difficulty levels (easy, medium, hard,

etc.), which game developers normally use, can make parts of the game too easy and others too hard.

Some game balancing systems can give players or non-player characters (NPC) an unfair advantage. A

15

common example of this is the ―rubber band‖ effect found in many racing games where the last place car

is rocketed forward to near the front (Hunicke, 2005). Other games use a ramping technique where the

game steadily gets harder as it goes on. However, increasing the difficulty faster than a player’s learning

curve can frustrate the player. These considerations have led to the study of dynamic difficulty

adjustment (DDA).

Difficulty adjustments can take different forms. A game can switch between different policies for

how to challenge players. For instance, a game could switch from a comfort policy that attempts to ―keep

players feeling challenged, but safe [by] padding their inventory‖ (Hunicke, 2005) to a discomfort policy

that challenges players by limiting item drops. Another way to adjust difficulty is through more direct

intervention. Items like weapons or health packs could be added to the playfield. The player’s hit points

or attack strength could be modified. Enemies’ hit points, weapons, spawn locations, or accuracy could

all be modified. A combination of these methods is normally used to adjust difficulty.

Hunicke (Hunicke, 2005) has developed a DDA system that regulates a game’s mechanics,

dynamics, and aesthetics. Mechanics are player interactions with the environment. Health, ammunition,

and weapons would all be part of a game’s mechanics. Dynamics are player movements between

encounters. The rate at which the player finds new weapons or power-ups is part of a game’s dynamics.

Aesthetics are how the mechanics and dynamics create difficulty. Increasing a game’s difficulty as it

progresses is a strategy for managing a game’s aesthetics.

Hunicke integrated her system, the ―Hamlet System‖ (Hunicke, 2005), into Valve Software’s

Half Life game engine. The Hamlet System is divided into two parts: evaluation of a player’s

performance and adjustment of a game’s settings. The system evaluates players based on the rate at

which they lose health. The amount of health a player loses over a set period fits a Gaussian probability

distribution. ―During combat, Hamlet records the damage…each enemy does to the player‖ (Hunicke,

2005). From this data the Hamlet System can determine the probability the player will die in that

encounter. If the player’s probability of death rises above 40%, the Hamlet System intervenes. It

increases the player’s health by 15 points every 100 ticks.

16

Hunicke experimented to see how adjustments affected player performance, if players noticed

adjustments, and if adjustments affected ―the player’s enjoyment, frustration, or perception of game

difficulty‖ (Hunicke, 2005). Players playing the unadjusted and adjusted games died an average of 6.4

times and 4.0 times in the first 15 minutes, respectively. If repeated death is equated with frustration, then

these adjustments should reduce player frustration. In a short survey given following gameplay, expert

players rated the adjusted game more enjoyable while novice players rated them equally. The survey also

found no correlation between a player’s perception of game difficulty and whether the game difficulty

was adjusted. This means that the game was made less frustrating and more enjoyable without the player

feeling as though the game was ―fixed‖ in their favor. Hunicke concludes that if a small change like

manipulating health could improve a game, then a well designed DDA system has the potential to greatly

improve a game.

Another method for handling DDA is proposed by Andrade et al. (Andrade, Ramaloh, Santana, &

Corruble, Challenge-Sensative Action, 2005) (Andrade, Ramaloh, Santana, & Corruble, Automatic

Computer Game Balancing, 2005). Andrade et al. integrated their DDA system into a fighting game

called Knock’Em which is similar to Midway’s Mortal Kombat. Like Hunicke’s system, Andrade et al.’s

Reinforcement Learning (RL) system uses a difficulty calculation to manipulate the game. However,

fighting games differ from first-person shooters like Half Life: they do not provide weapons or health

packs. The authors rejected two strategies for DDA. Dynamic scripting can become too complex in large

systems while genetic algorithm techniques do not adapt quickly to a player’s skill level.

Andrade et al.’s technique of choice, Reinforcement Learning, is ―characterized as the problem of

learning what to do (how to map situations into actions) so as to maximize a numerical reward signal‖

(Andrade, Ramaloh, Santana, & Corruble, Challenge-Sensative Action, 2005). RL is based on a Markov

Decision Process (MDP) involving a series of reward values r(s, a), where an entity receives a reward for

an action a in a state s. The RL algorithm attempts to maximize an entity’s reward value by choosing the

correct action based on its current state. The algorithm uses memories of past choices and the results of

those choices to choose the best action to maximize reward.

17

The authors discuss two main difficulties with RL. The first is getting the game’s AIs to play at

the same level as the player at the start of the game. To do this, Andrade pre-trained AIs by having them

play against themselves to develop basic character policies. Once the agents start playing against the

player they refine their play style to complement the player’s style and skill. The second difficulty is

choosing what to do once the optimal policy has been learned. Directing agents to randomly choose

actions could result in nonsense actions (like punching when the opponent is on the other side of the

screen). Directing agents to choose only optimal actions would make the agent impossibly difficult.

Instead, the AI agent must choose ―progressively sub-optimal actions until the agent's performance is as

good as the player’s‖ (Andrade, Ramaloh, Santana, & Corruble, Challenge-Sensative Action, 2005) or

more optimal actions if the game becomes too easy.

Andrade tested his RL agents against agents that randomly choose actions and agents that always

choose the optimal action. He found that the fights normally ended with a small difference in health

points, ―meaning that both fighters had similar performance‖ (Andrade, Ramaloh, Santana, & Corruble,

Challenge-Sensative Action, 2005)—that is, the RL AI agents closely matched their opponent’s skill

level. Andrade is currently in the process of testing his RL AI agents against real people to see if the

results stand.

Ant Colonization Optimization Overview

Ant Colonization Optimization (ACO) is a search algorithm that simulates ant foraging behavior

(Coltorti & Rizzoli, 2007). The algorithm functions by randomly sending out artificial ―ants‖ into a

search space, starting from random points in the search space or at a central hub. Each ACO ant that finds

a solution mimics the behavior of a biological ant by leaving a simulated chemical (pheromone) trail on

its path home. This path’s strength is proportional to the solution’s success; shorter solutions yield

stronger trails. The next iteration of ACO ants accounts for pheromones when choosing a direction to

travel. Simulated pheromones, like real pheromones, weaken over time, causing less-optimal paths to be

18

abandoned for better paths. More extensive searches tend to find better, if not necessarily optimal,

solutions.

ACO Case Studies

ACO has been adapted to a variety of NP-hard problems. One successful use of ACO by Coltorti

and Rizzoli (Coltorti & Rizzoli, 2007) used the ANTROUTE algorithm to optimize vehicle routing

problems. A vehicle routing problem consists of multiple clients like grocery stores that need to be

serviced by vehicles. An optimal solution serves all clients and minimizes resource consumption while

respecting operational constraints. Examples of these constraints would be ―the driver’s maximum

working time, and minimizing the total transportation cost‖ (Coltorti & Rizzoli, 2007).

ANTROUTE is divided into two stages (Coltorti & Rizzoli, 2007). During the first stage, each ant

independently finds a solution. During the second stage, pheromone trails are decreased due to

evaporation and increased based on the ants’ paths. ANTROUTE searches for solutions using two

separate colonies of ants: one that minimizes driving time and another that minimizes vehicles. By

combining the solutions, paths were found that would minimize the number of vehicles needed and the

total distance travelled.

Coltorti and Rizzoli used ANTROUTE to calculate a distribution strategy for a supermarket chain

in Switzerland that distributes goods to over six-hundred stores. The search space consisted of a graph

whose vertices modeled the chain’s stores and delivery hub and whose edges modeled transportation

routes. Distances between vertices were calculated using average driving speeds determined from real

world data. Coltorti and Rizzoli also modeled overheads like the time needed to hook a trailer to a truck

and to unload pallets at a destination. Their main constraint was that all routes had to be competed in one

day.

ANTROUTE initially proposed a strategy that cut the number of routes in use from 2056 to 1614

and increased truck space used from 77% to 98%. The solutions were found to be infeasible, due to its

failure to return trucks to their starting points for next-day use. The algorithm was then modified to use

19

petal shaped routes, similar to those used by human planners. The modified algorithm’s solutions used

1807 routes with a trucking load of 87%. ANTROUTE, moreover, took five minutes to do what took the

human planners close to three hours.

Coltorti and Rizzoli used ANTROUTE to compute routes for an Italian company with multiple

delivery hubs. Goods moved from manufacturers to hubs, and thence to shops. Italian laws required all

pick-ups to be made before any deliveries, and forbade orders from being split between tours. Deliveries

were handled by a subcontractor with trucks deployed throughout Italy. This allowed trucks to start at the

first pickup point instead at a delivery hub and to be used without concern for their numbers. So,

ANTROUTE was modified so it only had one colony.

Coltorti and Rizzoli determined that the algorithm did about as well as human planners if the

problem complexity was low, but outperformed people for routes involving large numbers of orders and

high complexity. On average, ANTROUTE reduced the number of routes needed by ten and increased

the efficiency by more than 4%.

Coltorti and Rizzoli also used ANTROUTE to schedule emergency winter deliveries for a fuel oil

distribution company whose customers that ran out of fuel. The challenge in this case was the need to

schedule trucks that were already delivering fuel to other customers. To support new orders, the day was

divided into time slices. In between these slices, filled orders were removed and new orders were added.

At each time slice ANTROUTE was rerun and new routes were planned. After testing having a number

of time slices between 5 and 200 it was determined that 25 time slices minimized travel time.

As with Coltorti and Rizzoli, initial ACO implementations were designed to find strategies for

traversing closed graphs. ACO algorithms have since been adapted to traverse continuous search spaces.

A continuous search space is a graph that has an infinite number of nodes and edges. This scenario

models real-world searches for food, where there are infinitely many paths for ants to follow and

directions to take. One algorithm for continuous search spaces by França et al (França, Coelho, Von

Zuben, & Attux, 2008) is called Multivariate Ant Colony Algorithm for Continuous Optimization

(MACACO).

20

França et al.’s work combines and extends two earlier ant search algorithms. The first, CACS

(Continuous Ant Colony System), was proposed in 2004 by Pourtakdoust and Nobahari. In CACS, ―the

discrete pheromone probabilistic function is replaced by a Gaussian probability density function (PDF)‖

(França, Coelho, Von Zuben, & Attux, 2008). During each iteration of the search, the ants modify the

distribution’s mean and variance. Initially, the variance is set to three times the range of the variables.

The variance is then modified at run time, using ―a weighted average of the distance between each

individual in the population and the best solution found so far‖ (França, Coelho, Von Zuben, & Attux,

2008). The method’s advantages include the method’s use of only one parameter—the number of ants—

making successive generations of ants easier to generate. However, the algorithm converges to a single

local optimum, leading to premature convergence on an optimum value.

The second search algorithm, ACOR, was proposed by Socha and Dorigo in 2006. In ACOR,

solutions are ―built according to an archive of the n best solutions found so far‖ (França, Coelho, Von

Zuben, & Attux, 2008). Like CACS, ACOR uses a Gaussian PDF. However, ACOR has multiple PDF’s:

one for each of the n best solutions. The ants find new solutions by following the pheromone trails. The

solutions are input into the archive and sorted by fitness. Solutions that are worse than the nth best

solution so far are deleted and the process is repeated. The advantage of using multiple PDFs is there is a

much lower occurrence of premature convergence. But, maintaining multiple PDFs is computationally

expensive.

MACACO exploits relationships between variances in multiple variables (or dimensions) to

reduce the size of the search space explored by the algorithm. In a two-dimensional space, two Gaussian

distributions plotted against each other on a plane will form a circle. A multivariate distribution, on the

other hand, will form an ellipse, which encompasses significantly less area than the circle. Once this

ellipse’s shape has been calculated, it can be translated to overlay the portion of the search space which

contains the current best solution resulting in a more focused search.

To implement MACACO’s search algorithm, a covariance matrix Σ is created with center µ.

Then, a vector x is created for each node containing the probabilities for every variable that is a search

21

parameter. Next, a matrix of the normalized eigenvectors of the covariance matrix φ is created as well as

a diagonal matrix Λ containing the eigenvalues. Next, a value Q is defined as Q= Λ
1/2

 φ. Each vector x is

then replaced by a vector y where y=Q*x+µ. The weights in y are used to shape the Gaussian

distributions at the nodes. After each iteration, the covariance matrix is recalculated using the best 70%

of the solutions.

França tested MACACO against CACS and ACOR on six benchmark problems. Even though

MACACO ―demands the calculation of the eigenvectors and eigenvalues of a correlation matrix at each

iteration‖ (França, Coelho, Von Zuben, & Attux, 2008), it was, on average, no worse than about half as

fast as CACS, as well as 10 times faster than ACOR. On average, MACACO also found closer to

optimal solutions than CACS or ACOR on four of the six benchmarks. França concludes that MACACO

improves on ACOR. He also concludes that MACAO usually improves on CACS, since it typically

produces better results for a small additional computational cost.

The ACO algorithm has also been adapted to play the video game Tetris. Tetris is a good

candidate for ACO because ―it is NP-complete to maximize the number of rows removed while playing

the given piece sequence‖ (Chen, Wang, Wang, Shi, & Gap, 2009). An implementation of an ACO

algorithm was proposed by Chen et al (Chen, Wang, Wang, Shi, & Gap, 2009). Chen’s algorithm selects

the best move based on a value function which is run on ―all possible subsequent game boards‖ (Chen,

Wang, Wang, Shi, & Gap, 2009). This value function considers sixteen parameters, including the

position of the highest hole, the number of blocks above the highest hole, and the number of potential

lines. Chen’s algorithm scans a list of Tetronimos and positions them according to their optimal values.

The algorithm also uses a dynamic heuristic in conjunction with the pheromone evaporation rate to

prevent premature convergence.

Chen’s algorithm shows promise compared to some algorithms for playing Tetris. It completed

an average of about 7000 lines per game with a maximum of over 17,000 lines. Its performance is

however overshadowed by the Noisy Cross Entropy method, which had a maximum of almost 350,000

22

Fig 4. A 4x4 BMSN (Melo, 2009)

lines in one game, and a genetic algorithm that had a maximum of almost 600,000 lines. Chen suggests

that an exponential value function instead of a linear value function could improve performance.

Melo used a multi-colony ACO to solve a node placement problem (NPP) (Melo, 2009). The

goal of an NPP is to minimize the average weighted hop distance between all nodes in a graph. Melo’s

problem was set on a Bidirectional Manhattan Street Network (BMSN): a graph where every node is

connected to four other nodes, using weighted edges that represent communication paths, together with

the amount of traffic that flows along each edge (See Fig. 4). Intuitively, minimizing the average

weighted hop distance corresponds to optimizing communications across the network by minimizing

message traffic throughout the network.

Melo’s multi colony approach avoids premature convergence while also avoiding more

computationally intensive ACO implementations. Each of Melo’s colonies has the same number of ants,

runs for the same number of iterations, and shares a common heuristic function. Each colony has a

unique pheromone trail and records its own best performance. During each of the algorithm’s iterations,

each hive finds its current best solution. It then tries to improve on that solution using a local search. The

algorithm then determines the best and worst colony. If the difference between the best and worst colony

is significant enough then the best colony path is used to lay pheromone for the worst colony. This

process is called a trail migration. This allows the colonies to explore more of the graph while focusing

on the graph’s more promising areas.

23

In experimentation, Melo found that more using colonies produced better solutions. He tested his

algorithm on 4x4, 8x8, and 16x16 BMSNs. As the BMSN got larger, the ACO solutions diverged from

the optimal solutions. Melo also noted that trail migrations are more frequent during the algorithm’s

earlier iterations because the pheromone trails are not yet well established.

Pinto and Barán used ACO algorithms to solve multiobjective multicast routing problems (Pinto

& Barán, 2005). A multicast ―consists of simultaneous data transmission from a source node to a subset

of designation nodes in a computer network‖ (Pinto & Barán, 2005). Multicast is used to implement

services like TV transmissions and teleconferences, both of which are offered with quality of service

(QoS) guarantees. When issuing a multicast a network must consider QoS along with load balancing and

network resource utilization. So, any path optimized over a network must account for all of these

considerations.

Because multicast routing problems attempt to simultaneously optimize different, conflicting

parameters, they have no single solution. To assure converge to a single optimal solution, these

parameters must be totally ordered.

Pinto and Barán adapted two algorithms to solve the multicast routing problem. The first, the

Multi-Objective Ant Colony Optimization Algorithm (MOACS), places all ants at one source node.

From there the ants randomly traverse the grid until they find a solution. Each ant that finds a solution

leaves a pheromone trail to that solution. The algorithm defines λ values to represent the relative

importance of the different parameters. These λ values help determine which path is the best path and

what strength of pheromone to leave on the solutions. Stronger pheromones are left on superior solutions

and weaker pheromones are left on inferior solutions.

The second algorithm, Max-Min Ant System (MMAS), uses each iteration’s best solution to

update the pheromone trail. Pheromone trails are initialized with a high value to ensure high exploration

at the start of the algorithm. As in MOACS, λ values determine the relative influences of the parameters.

24

Fig 5. Gene, Chromosome, and Network Relationship (Pinto

& Barán, 2005)

The authors contrasted MOACS and MMAS with the Multiobjective Multicast Algorithm

(MMA), an evolutionary algorithm that has previously been shown to solve a multiobjective multicast

routing problem. Genes are built from random paths and chromosomes are built from the genes (See Fig.

5). Chromosomes are compared based on a fitness algorithm and new genes are built from combinations

of the most fit genes along with some random mutation.

A comparison of the three algorithms on multiple network topologies determined that MOACS

and MMAS found more solutions (30 and 12 respectively) whose parameters were within acceptable

range than MMA (six solutions). However, the MMA solutions dominate several of the solutions of

MOACS and MMAS, meaning MMA finds very good solutions. On average, MOACS had superior

performance because it averaged 65% undominated solutions compared to MMAS which averaged 13.5%

undominated solutions and MMA which only averaged 10% undominated solutions.

Based on their results, Pinto and Barán concluded that MOACS and MMAS are viable algorithms

for solving multiobjective multicast routing problems with MOACS being the better of the two.

25

Experimental Overview

The first task in the process of integrating ACO into games was to show proof of concept, i.e.,

show that pheromone trails could be placed on a grid and ―ants‖ could be made to follow them. This was

accomplished through the use of a simple simulation. A grid was set up with one square marked as a goal

and a different square marked as a source. One hundred ―ants‖ started at the source and each moved in a

random direction. When an ―ant‖ moved onto the goal square it was removed from the simulation and

trails were added around the goal pointing towards it. In Figure 6, the green squares represent the ants

which are searching for the goal, marked in pink. When one of the ants reaches the goal it releases a

pheromone trail (blue) which other ants could follow. Over time the strength of the trail would decrease

until it would fade away completely. After several trials, it was apparent that ―ants‖ would follow the

pheromone trails when they were active. Because these initial tests were successful, the next step was to

integrate pheromone trails into a simple game.

Ant Hunter was developed to demonstrate the utility of pheromone trails in game AI. Ant Hunter

was written in C++. The logical structure consists of six classes, two structs, several free functions, and a

main driver function. It has 1772 lines of code including white space and comments. Graphics are

Fig 6. Initial Simulation

26

r = random num between 1-10

if (r < pheromone strength at enemy

position)

{

 move in direction of pheromone

}

else

{

 move in random direction

}

Algorithm 1 Enemy Movement

handled using OpenGL with the glut32.dll library. OpenGL is also used to manage keyboard I/O and run

the AI tick at set time increments.

In Ant Hunter the player is an orange square who attempts to kill the enemy purple squares.

Enemies in Ant Hunter have a very simple two-state AI. When an enemy is close to a player it is in the

attack state. While in the attack state an enemy will move directly towards the player. If the player gets

too far away, an enemy will switch to the search state. In the search state, enemies randomly move

around the screen unless they are moving over a pheromone trail. Enemies that are moving over a

pheromone trail have a chance of following it depending on its strength (see Algorithm 1). When an

enemy gets close enough to the player it will switch to the attack state.

When an enemy is killed it releases a pheromone trail. Each pheromone has a strength value and a

direction value. Strength can range from 0-10 inclusive and the direction can be up, down, left, right, and

half way between each of those. A killed enemy releases a trail of strength 9 in the 8 different directions

all pointing towards the point where the enemy was killed in an effort to draw in other enemies to attack

the player (see Fig 7). The more recent a trail is the darker its color and the more likely an enemy is to

follow it. Over time, pheromone trails fade unless they are reinforced by the deaths of other enemies.

Figure 7 demonstrates the lifecycle of a pheromone trail.

Enemies also release pheromone trails when they switch from the search state to the attack state.

While an enemy moves around during the attack state it keeps track of its position history. When an

enemy switches from search to attack, the stored movements are turned into a pheromone trail.

27

1) Shoot a laser

3) Enemies follow trail and converge

2) Kill enemy and deploy pheromone

4) Trail fades over time

Fig 7. Pheromone Lifecycle

KEY

 Player

 Enemy

 Laser

 Pheromone

28

int position x

int position y

int scale factor

pheromone grid x = position x / scale factor

pheromone grid y = position y / scale factor

Algorithm 2 Position to Pheromone Coordinate

The environment of Ant Hunter consists of two grids: the position grid and the pheromone grid.

The position grid uses pixels as positions. This allows for simple collision detection based on the center

position of an object and its size. The pheromone grid is essentially laid over the position grid. Not every

position has its own unique node on the pheromone grid. If this were the case, the effect of pheromones

would be very limited. Instead, multiple positions are tied to one node of the pheromone grid.

By assigning a scale factor between the two grids and using integer division it is possible to easily

transform a position to a node on the pheromone grid (see Algorithm 2). By this method, a range of

positions can be linked to a single pheromone trail and thus an enemy will follow a pheromone trail if he

is anywhere in that range.

The player in Ant Hunter is controlled via the keyboard. The player moves using the standard

WASD keyset and fires using the arrow keys. The goal of the player is to kill as many enemies as

possible. Enemies respawn over time after they are killed. If an enemy comes into contact with the

player the player dies. When the player dies all of the pheromone trails are removed, the enemy is killed,

and the player is instantly moved to a random new location.

The goal of the experiment was to determine whether or not pheromone trails could be used to

affect the difficulty of the game. To test this, a simulated player (sim-player) was created to play the

game. The simulated player used a simple AI algorithm. At every tick it moves in a random direction. It

also shoots lasers at any enemies who were in a direct line with its position — up, down, left, or right —

plus or minus five pixels. The result of this is that the sim-player has better-than-human reflexes.

The experiment was conducted with three separate test groups: one with long pheromone trails,

one with medium length pheromone trails, and one with no pheromone trails. An individual simulation

consisted of allowing the sim-player to play the game for five minutes at four times normal game speed.

29

After each minute the number of enemies killed and the number of player deaths was output to a unique

log file. A total of fifty simulations were run for each test group.

30

Kills Deaths K:D

Long Trails 4000 1907 2.10

Short Trails 3103 1402 2.21

No Trails 1180 587 2.01

Table 1. Test Group Totals

Results and Analysis

After running the simulations, the results show a significant difference in the number of enemies

killed and the number of player deaths between

the three test groups (see Table 1).

The first thing to note is that the sim-

player was equally effective at killing enemies

at all three pheromone levels. This is demonstrated in two ways. The first is that the composite kill-to-

death ratio was close to 2.1 for all three test groups. The second is that the kill- to-death ratio becomes

more consistent the more enemies the sim-player has to face. This is demonstrated by the decreasing

variance as the number of kills and deaths increases. The variances were 1.21, 0.44, and 0.29 for no

trails, short trails, and long trails respectively times (see Appendix B for complete statistical analysis).

This is because the sim-player has perfect reflexes — far better than any human player could have. This

means that that difficulty cannot be measured based on the performance of the sim-player.

It is clear that from the data that the sim-player will die more when pheromone trails are used as

opposed to when they are not. With long pheromone trails the sim-player died an average of 38.1 times

per simulation, with short trails it died an average of 28.0 times, and with no trails it died an average of

11.7. This can be attributed to the fact that the pheromone trails cause the sim-player to tend to face more

enemies during a trial.

 The sim-player has no logic for running away from an enemy. So, every interaction that the sim-

player has with an enemy ends with either the death of the enemy or the sim-player. Therefore the sum of

the kills and deaths for a trial is the number of enemies the sim-player had to interact with during a trial.

Unlike with the sim-player, the more enemies a human player has to face the more likely they are to make

a mistake. When a player is more likely to make a mistake, a game is harder. Therefore it is reasonable to

say that the more enemies the sim-player has to face the harder the game is.

31

Looking at the results for the three test groups it is clear that the longer the pheromone trail was,

the more enemies the player had to face (see Fig. 8). This means that the longer pheromone trails were

successful in drawing more enemies to the player. As noted before, more enemy interactions are

equivalent to a harder game, so, in this sense, difficulty was successfully controlled by manipulating the

parameters of the pheromone trails.

It can also be concluded that pheromone trails are an effective form of communication between

two separate AI agents. When an enemy dies it relays the current position of the player to other nearby

enemies via the pheromone trails. Without this, the other enemies would continue to be ignorant of the

player’s position. The pheromone trails allow communication with nearby enemies using a memory-

expensive method as opposed to a computationally-expensive method. An enemy simply adds

pheromones to the pheromone grid instead of having to determine which other enemies are within a

certain distance — a process which would require a distance calculation as well as other logic.

Pheromone trails do not need to be limited to their functionality in Ant Hunter. Pheromone trails

could be used to relay information about the location of any important object in a gaming environment.

They could also be used to issue commands from one AI agent to another (like a squad commander giving

commands to his soldiers). There are many possible uses for pheromone trails and these should be

explored.

0

1000

2000

3000

4000

5000

Kills Deaths

Total Kills vs. Total Deaths for each
Trial Group

Long Trails

Short Trails

No Trails

Fig 8.Total Kills and Deaths

32

Future work with Ant Hunter could include running trials with human players as opposed to the

sim-player. This could confirm that human players have a harder time when facing more enemies and

will have more deaths than when they face fewer enemies. Another option would be making the sim-

player more closely model human behavior. This removes the problem of people getting better at the

game over multiple trials. This could be done by adding a ―stress level‖ to the sim-player so it would

become less accurate when it has to simultaneously face multiple enemies. The use of pheromone trails in

a 3D environment could also be explored. Pheromone trails in Ant Hunter operate in two dimensions in

eight set directions. To operate in a 3D environment, the direction vector would need to be able to point

in any direction and would also have to account for terrain in the game environment. Lastly, the

pheromone trail system could be integrated into a more complex game to see if it is scalable to a larger

gaming environment.

33

Bibliography

Andrade, G., Ramaloh, G., Santana, H., & Corruble, V. (2005). Automatic Computer Game

Balancing: A Reinforcement Learning Approach. AAMAS'05 (pp. 1111-1112). Utrecht, Netherlands: ACM.

Andrade, G., Ramaloh, G., Santana, H., & Corruble, V. (2005). Challenge-Sensitive Action

Selection: an Application to Game Balancing. IEEE/WIC/ACM International Conference on Intelligent

Agent Technology. Compiegne, France: IEEE.

Chen, X., Wang, H., Wang, W., Shi, Y., & Gap, Y. (2009). Apply Ant Colony Optimization to Tetris.

GECCO. Montreal: ACM.

Coltorti, D., & Rizzoli, A. E. (2007). Ant Colony Optimization for Real-world Vehicle Routing

Problems. SIGEVOlution , 2 (2).

França, F. O., Coelho, G. P., Von Zuben, F. J., & Attux, R. d. (2008). Multivariate Ant Colony

Optimization in Continuous Search Spaces. GECCO (pp. 9-16). Atlanta: ACM.

Howland, G. (1999, October 12). A Practical Guide to Building a Complete Game AI: Volume II.

Retrieved October 21, 2009, from GameDev.net:

http://www.gamedev.net/reference/articles/article785.asp

Hunicke, R. (2005). The Case for Dynamic Difficulty Adjustment in Games. Advances in Computer

Entertainment Technology (pp. 429-433). Valencia, Spain: ACM.

Isla, D. (2005, March 11). GDC 2005 Proceeding: Handling Complexity in the Halo 2 AI. Retrieved

October 21, 2009, from Gamasutra:

http://www.gamasutra.com/view/feature/2250/gdc_2005_proceeding_handling_.php

Melo, L. A. (2009). Multi-colony Ant Colony Optimization for the Node Placement Problem.

GECCO. Montreal: ACM.

Nareyek, A. (2004, February). AI in Computer Games. Queue , pp. 58-65.

34

Orkin, J. (2005). Agent Architecture Considerations for Real-Time Planning in Games. Artificial

Intelligence and Interactive Digital Entertainment. Marina del Rey, CA: Jeff Orkin.

Orkin, J. (2006). Three States and a Plan: The A.I. of F.E.A.R. Game Developers Conference. San

Jose: Jeff Orkin.

Pinto, D., & Barán, B. (2005). Solving Multiobjective Multicast Routing Problem with a new Ant

Colony Optimization Approach. Latin America Networking Conference. Calim Colombia: ACM.

35

Appendix A: Data Tables

Long Pheromone Trails

Trial
Number of

Kills
Number of

Deaths K:D Trial
Number of

Kills
Number of

Deaths K:D

1 42 14 3.000 26 69 42 1.643

2 42 21 2.000 27 80 35 2.286

3 41 22 1.864 28 61 41 1.488

4 55 28 1.964 29 86 53 1.623

5 112 40 2.800 30 123 47 2.617

6 41 23 1.783 31 114 52 2.192

7 67 36 1.861 32 67 41 1.634

8 50 26 1.923 33 77 32 2.406

9 42 19 2.211 34 70 38 1.842

10 54 39 1.385 35 118 57 2.070

11 98 53 1.849 36 97 53 1.830

12 74 40 1.850 37 125 48 2.604

13 95 36 2.639 38 99 47 2.106

14 85 39 2.179 39 108 40 2.700

15 24 16 1.500 40 103 41 2.512

16 70 27 2.593 41 59 38 1.553

17 78 46 1.696 42 80 49 1.633

18 53 16 3.313 43 101 47 2.149

19 68 35 1.943 44 118 58 2.034

20 65 32 2.031 45 78 27 2.889

21 83 43 1.930 46 142 64 2.219

22 66 30 2.200 47 65 41 1.585

23 73 32 2.281 48 81 21 3.857

24 90 25 3.600 49 82 46 1.783

25 132 57 2.316 50 97 54 1.796

 TOTAL 4000 1907 2.098

36

Short Pheromone Trails

Trial

Number of
Kills

Number of
Deaths K:D Trial

Number of
Kills

Number of
Deaths K:D

1 39 14 2.786 26 75 31 2.419

2 144 46 3.130 27 34 22 1.545

3 51 21 2.429 28 71 36 1.972

4 85 42 2.024 29 61 45 1.356

5 83 32 2.594 30 117 41 2.854

6 87 27 3.222 31 12 7 1.714

7 53 27 1.963 32 59 34 1.735

8 73 25 2.920 33 115 59 1.949

9 21 10 2.100 34 50 10 5.000

10 97 43 2.256 35 86 31 2.774

11 74 34 2.176 36 53 26 2.038

12 49 26 1.885 37 71 45 1.578

13 22 17 1.294 38 75 39 1.923

14 68 34 2.000 39 69 32 2.156

15 75 28 2.679 40 51 45 1.133

16 42 18 2.333 41 43 27 1.593

17 68 27 2.519 42 89 42 2.119

18 82 27 3.037 43 70 37 1.892

19 39 13 3.000 44 32 15 2.133

20 31 13 2.385 45 46 20 2.300

21 65 28 2.321 46 71 28 2.536

22 20 18 1.111 47 10 7 1.429

23 25 13 1.923 48 45 18 2.500

24 36 22 1.636 49 68 24 2.833

25 99 41 2.415 50 102 35 2.914

 TOTAL 3103 1402 2.213

37

No Pheromone Trails

Trial
Number of

Kills
Number of

Deaths K:D Trial
Number of

Kills
Number of

Deaths K:D

1 21 15 1.400 26 15 8 1.875

2 9 3 3.000 27 41 24 1.708

3 18 16 1.125 28 16 6 2.667

4 25 10 2.500 29 15 10 1.500

5 18 17 1.059 30 23 9 2.556

6 22 11 2.000 31 26 14 1.857

7 20 11 1.818 32 24 16 1.500

8 30 10 3.000 33 34 11 3.091

9 21 12 1.750 34 13 6 2.167

10 16 18 0.889 35 31 7 4.429

11 27 10 2.700 36 17 7 2.429

12 31 10 3.100 37 32 12 2.667

13 17 7 2.429 38 34 22 1.545

14 16 24 0.667 39 16 9 1.778

15 24 11 2.182 40 23 17 1.353

16 22 4 5.500 41 11 8 1.375

17 20 8 2.500 42 29 18 1.611

18 26 16 1.625 43 15 7 2.143

19 24 14 1.714 44 15 3 5.000

20 19 9 2.111 45 30 15 2.000

21 33 17 1.941 46 26 10 2.600

22 41 21 1.952 47 39 6 6.500

23 22 9 2.444 48 23 10 2.300

24 20 14 1.429 49 35 16 2.188

25 31 11 2.818 50 24 8 3.000

 TOTAL 1180 587 2.010

38

Appendix B: Graphical Data Summaries

Data Summary for Long Trails

120906030

Median

Mean

9085807570

1st Q uartile 64.000

Median 78.000

3rd Q uartile 98.250

Maximum 142.000

72.437 87.563

68.672 85.328

22.229 33.161

A -Squared 0.28

P-V alue 0.617

Mean 80.000

StDev 26.611

V ariance 708.163

Skewness 0.256758

Kurtosis -0.377602

N 50

Minimum 24.000

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kills

Graphs generated in Minitab 15

39

6050403020

Median

Mean

4240383634

1st Q uartile 27.750

Median 39.500

3rd Q uartile 47.000

Maximum 64.000

34.642 41.638

35.000 41.328

10.282 15.339

A -Squared 0.29

P-V alue 0.586

Mean 38.140

StDev 12.309

V ariance 151.511

Skewness -0.103586

Kurtosis -0.678581

N 50

Minimum 14.000

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Deaths

40

3.53.02.52.01.5

Median

Mean

2.32.22.12.01.91.8

1st Q uartile 1.7929

Median 2.0329

3rd Q uartile 2.4327

Maximum 3.8571

2.0030 2.3075

1.8628 2.2035

0.4475 0.6676

A -Squared 1.25

P-V alue < 0.005

Mean 2.1552

StDev 0.5358

V ariance 0.2870

Skewness 1.23052

Kurtosis 1.63206

N 50

Minimum 1.3846

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kill to Death Ratio

41

14012010080604020

Median

Mean

7065605550

1st Q uartile 41.250

Median 66.500

3rd Q uartile 76.750

Maximum 144.000

54.009 70.111

50.672 71.000

23.665 35.303

A -Squared 0.27

P-V alue 0.669

Mean 62.060

StDev 28.330

V ariance 802.588

Skewness 0.404962

Kurtosis 0.314960

N 50

Minimum 10.000

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kills

Data Summary for Short Trails

42

6048362412

Median

Mean

3230282624

1st Q uartile 18.000

Median 27.000

3rd Q uartile 36.250

Maximum 59.000

24.694 31.386

24.672 32.000

9.836 14.673

A -Squared 0.28

P-V alue 0.615

Mean 28.040

StDev 11.775

V ariance 138.651

Skewness 0.202695

Kurtosis -0.354725

N 50

Minimum 7.000

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Deaths

43

54321

Median

Mean

2.52.42.32.22.12.0

1st Q uartile 1.8901

Median 2.1664

3rd Q uartile 2.6150

Maximum 5.0000

2.0626 2.4387

1.9909 2.4162

0.5527 0.8245

A -Squared 0.53

P-V alue 0.169

Mean 2.2507

StDev 0.6617

V ariance 0.4378

Skewness 1.32214

Kurtosis 4.79731

N 50

Minimum 1.1111

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kill to Death Ratio

44

403224168

Median

Mean

26252423222120

1st Q uartile 17.000

Median 23.000

3rd Q uartile 30.000

Maximum 41.000

21.414 25.786

20.000 25.328

6.424 9.583

A -Squared 0.48

P-V alue 0.221

Mean 23.600

StDev 7.690

V ariance 59.143

Skewness 0.444432

Kurtosis -0.347826

N 50

Minimum 9.000

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kills

Data Summary for No Trails

45

2418126

Median

Mean

13121110

1st Q uartile 8.000

Median 10.500

3rd Q uartile 16.000

Maximum 24.000

10.291 13.189

9.672 12.657

4.259 6.353

A -Squared 0.81

P-V alue 0.035

Mean 11.740

StDev 5.098

V ariance 25.992

Skewness 0.605967

Kurtosis -0.044154

N 50

Minimum 3.000

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Deaths

46

6.44.83.21.6

Median

Mean

2.62.42.22.01.8

1st Q uartile 1.6215

Median 2.1270

3rd Q uartile 2.6667

Maximum 6.5000

1.9966 2.6230

1.8444 2.4338

0.9206 1.3733

A -Squared 2.33

P-V alue < 0.005

Mean 2.3098

StDev 1.1021

V ariance 1.2145

Skewness 1.90382

Kurtosis 4.73480

N 50

Minimum 0.6667

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev
95% Confidence Intervals

Summary for Kill to Death Ratio

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2010

	Using Ant Colonization Optimization to Control Difficulty in Video Game AI.
	Joshua Courtney
	Recommended Citation

	tmp.1392744965.pdf.ClTAl

