
East Tennessee State University
Digital Commons @ East Tennessee State University

Undergraduate Honors Theses Student Works

5-2012

Exploring the Uses of ShellBag Data within the
Windows 7 Registry.
Daniel A. Duncan
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/honors

Part of the Computer Sciences Commons

This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State
University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee
State University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Duncan, Daniel A., "Exploring the Uses of ShellBag Data within the Windows 7 Registry." (2012). Undergraduate Honors Theses. Paper
136. https://dc.etsu.edu/honors/136

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fhonors%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fhonors%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fhonors%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Exploring the Uses of ShellBag Data within the Windows 7 Registry

Thesis submitted in partial fulfillment of Honors

By

Daniel Duncan

The Honors College

University Honors Scholars Program

East Tennessee State University

10 April 2012

 Dr. Michael R. Lehrfeld, Faculty Mentor

Mr. Patrick Cronin, Faculty Reader

 Dr. Ronald Zucker, Faculty Reader

Duncan 1

DOCUMENT INFORMATION

Author(s): Daniel Duncan, duncanda@goldmail.etsu.edu

Classification: Public

Keywords: Windows ShellBag, Digital Forensics, Computer Forensics, BAG parser, Windows

Explorer, Shell, Bags, BagMRU, Window settings, RecentDocs, StreamMRU

VERSION

Version Date Comments

1.0 8/29/2011 Initial version based on research done in Spring 2011.

1.1 10/20/2011 Added initial table of contents, overview of program, and Abstract

1.2 12/7/2011 Added Introduction

1.3 12/13/2011 Added Shell BAG Analysis

1.4 1/27/2012 Updated Shell BAG Analysis

1.5 1/28/2012

Added sources. updated Glossary, added Document Information,

updated Acknowledgements

1.6 1/29/2012 Added Algorithm section

1.7 2/14/2012 Updated Algorithm section

1.8 2/28/2012 Updated Syntax and Structure section

1.9 2/29/2012 Added the Conclusions section

1.10 3/1/2012 Added Appendices, Overall proofreading changes

2.0 3/7/2012 Applied initial proofreading comments from mentor

2.1 3/18/2012 Applied second proofreading comments from mentor

3.0 3/28/2012 Updated Algorithm section

3.1 4/2/2012

Updated Algorithm section, added Source Code and Program Results

sections

Duncan 2

ABSTRACT

Digital forensic examiners are faced with the task of recreating a user’s actions for

auditing purposes. ShellBag data from the registry is critical to the reproduction of these

actions in a Microsoft Windows 7 operating system, because ShellBag data contains a listing of

folders and files contained within a specific folder. Once an understanding of the structure of

ShellBag data in a Windows 7 operating system is reached, this data can be parsed to create a

timeline of user actions on a given machine.

Duncan 3

TABLE OF CONTENTS

Document Information ... 1

Abstract .. 2

Table of Contents .. 3

Acknowledgments ... 5

Introduction ... 6

 Overview ... 6

 What is Computer Forensics? ... 7

 What is the Registry? .. 7

 Registry Structure.. 8

Registry Location ... 9

ShellBag Analysis ... 12

How Windows Operating Systems Use ShellBags ... 12

ShellBag Location .. 13

Syntax & Structure .. 14

Application ... 27

Overview ... 27

Algorithm ... 27

Source Code .. 28

Conclusions .. 30

Program Results .. 30

Duncan 4

Summary ... 30

Works Cited ... 32

Duncan 5

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Professor Ronald Zucker and Mr.

Patrick Cronin for their assistance in the proofreading and preparing this manuscript. In

addition, special thanks to Dr. Michael Lehrfeld whose knowledge and experience in this field

gave the idea to take on this research for the advancement of the field of digital forensics.

Thanks to Billy Overton for his help in creating the proof-of-concept script for this project. Last

but not least, thanks to my fiancée, Jamie, for her encouragement during this project.

Duncan 6

INTRODUCTION

Overview

Think about the process involved when a police officer responds to a crime report and

examines a computer at the scene of the crime that supposedly contains child pornography.

ShellBags provide an enhanced tracking system of user actions within Windows Explorer due to

the fact that the Windows Registry uses ShellBags to store records of all folders that have ever

been accessed and when those folders were accessed.

 The Windows Registry is the storage place for all user settings and pointers to data

stored on a computer’s hard drive. According to some recent research by Zhu, Gladyshev, and

James (2009) on the structure of the ShellBag section of the Windows Registry, the information

gleaned from this part of the Registry is the key. ShellBag data is used by Windows for the

arrangement of files and folders within the Windows Explorer view. However, they in turn

contain snapshots of contents within folders when these folders are viewed at different screen

resolutions, which hold critical information about what files have been created, modified, and

deleted. As a result, this data is critical to recreating user events to use as evidence in criminal

prosecution.

ShellBag data is not readily available to the user because of its location and its format

within the Windows Registry. To access this information, a program that parses the data within

ShellBags is needed. To address this need, a script has been written in Windows PowerShell to

illustrate this parsing process.

Duncan 7

What is Computer Forensics?

To understand why this research has taken place, it is important to understand the field

to which it applies. Forensics is defined as “the process of using scientific knowledge for

collecting, analyzing, and presenting evidence to the courts.” Computer forensics is then

defined as “the discipline that combines elements of law and computer science to collect and

analyze data from computer systems, networks, wireless communications, and storage devices

in a way that is admissible as evidence in a court of law,” (US-CERT, 2008). This research will

serve the digital forensics field by giving practitioners an understanding of how ShellBag data is

collected and analyzed.

What is the Registry?

 The study of ShellBags is dependent upon a clear understanding of the Windows

Registry. According to the Microsoft Computer Dictionary, the registry is defined as “A central

hierarchical database used in Microsoft Windows 98, Windows CE, Windows NT, and Windows

2000 used to store information that is necessary to configure the system for one or more users,

applications and hardware devices,” (Microsoft Support, 2008). Windows references the

information found in the Registry frequently during system uptime to successfully execute

programs, open documents, and create, modify, or delete files and folders in the file system.

Duncan 8

Before the Registry, Windows used text-based .ini files to hold system configurations for the

user.

 In summary, the registry is a database that stores references to files, settings,

applications used during the time that a user is logged on. In addition, a clear understanding of

the registry structure is required before analyzing ShellBags.

Registry Structure

 The Windows Registry is divided into hives, which function as tree-like structures which

contain keys, which contain sub-keys, which in turn contain values (also referred to as

properties). There are 5 main hives within the Registry, all of which are explained in Table 1.

Each hive contains settings that relate either to users or to the computer itself.

Windows Registry Hives

Name Function

HKEY_CURRENT_USER
Contains settings for the current user such as screen color, background, and folder

storage structure

HKEY_USERS Contains profiles for every user on the machine

HKEY_LOCAL_MACHINE Contains information about the computer's configuration

HKEY_CLASSES_ROOT Contains information that opens ensures a program's correct execution

HKEY_CURRENT_CONFIG Contains information about the hardware used by the computer

Table 1: This table lists the five Registry hives and a brief description of the functionality of each

hive.

Duncan 9

 HKEY_CURRENT_USER and HKEY_USERS contain settings that refer to users on the

computer. The HKEY_CURRENT_USER hive contains the root of the configuration information

for the current logged in user. Settings for the user such as screen color, background, and

folder storage structure are kept here. The HKEY_USERS hive contains the actively loaded

profiles on the computer for every user that has logged into the machine.

 The HKEY_LOCAL_MACHINE, HKEY_CLASSES_ROOT, and HKEY_CURRENT_CONFIG hives

contain settings for the computer itself. The HKEY_LOCAL_MACHINE hive contains information

about the configuration of the computer itself. The HKEY_CLASSES_ROOT hive holds the

information that ensures that the correct program is opened when a file is selected to open

using Windows Explorer. This same information can also be found under the

HKEY_LOCAL_MACHINE and the HKEY_CURRENT_USER keys. In the

HKEY_LOCAL_MACHINE\Software\Classes key, default settings for all users can be found. In

the HKEY_CURRENT_USER\Software\Classes key, settings chosen by the individual user are

stored and would be applied instead of the default settings. The HKEY_CLASSES_ROOT hive

blends these two sources of information. However, settings must be modified under the

HKEY_CURRENT_USERS key for custom settings or under the HKEY_LOCAL_MACHINE key for

default settings. The last hive, HKEY_CURRENT_CONFIG, contains information about the

hardware used by the local computer upon startup (Davies, 2006).

Registry Location

 The most common way to view the Registry is to run the regedit.exe program. This

program presents a graphical representation of the registry which visibly illustrates the tree-like

Duncan 10

structure of the Registry. The information found within the registry can be viewed in more

ways than just the regedit.exe GUI, such as viewing the text-based ntuser.dat system file in a

traditional text editor or by navigating to the Registry from within the Windows PowerShell

interface. Registry values are also stored in files on the hard drive. In Windows 7, these files

are organized in much of the same way as the in the Windows XP and Vista file systems, which

is under the path C:\Windows\System32\config. This directory contains an assortment of files

with varying extensions. Files with a .dat or no extension are the basic registry files, which were

used in older versions of Windows. Files with any kind of .log extension have traditionally been

used to keep record of any changes made to the registry. In Windows 7, these log files have

been split up into two parts: .LOG1 and .LOG2. .LOG1 files contain the current list of changes

made to the registry, and .LOG2 contains the original snapshot of the registry, thus replacing

the traditional .sav files which were used in the past to hold the original snapshot of the registry

before any installations or modifications took place. The HKEY_CURRENT_USER values are

stored elsewhere in the file system under the path C:\Users\{UserName} and in the file

ntuser.dat (Davies, 2006).

Due to permission issues, the user is not allowed to access and edit the registry value

files. However, one can navigate to the registry hives in Windows PowerShell by issuing a

command to change the directory to one of the aforementioned registry hives. For example,

one could access the HKEY_CURRENT_USERS hive by typing the command cd HKCU: into the

PowerShell command prompt. PowerShell treats the Registry in the same manner as it does

the File System, so the user can navigate through the keys like he would normal directories.

Duncan 11

This means that the user can view the contents of the keys, and thus analyze the contents of

ShellBags.

Duncan 12

SHELL BAG ANALYSIS

How Windows Operating Systems Use ShellBags

ShellBag data is used by Windows for the arrangement of files and folders within the

Windows Explorer view. It is also used to store both recently and frequently used applications

in the Start Menu, as well as data about recently used folders stored anywhere else on the

machine. Forensics experts have found that this data provides tracks of deleted files and

folders, network paths, and external media once plugged into the system. ShellBag data can

give this kind of information because it takes snapshots of the file structure within any

mounted media, including removable media. ShellBag data provides consistency in how the

user sees windows in Windows Explorer from one session to another (Zhu, Gladyshev & James,

2009).

If the user resizes a window in Windows 7, data about the files and folders within the

resized folder are written to sub-keys within the key

HKEY_CURRENT_USER\Software\Microsoft\Windows\Shell\Bags. It is possible for investigators

to recreate folder contents using this data alone, but since the data is stored in binary blobs, it

is relatively obscure to computer users with no coding knowledge. A binary blob is “a collection

of binary data stored as a single entity,” (Wikipedia contributors, 2011). These binary blobs are

stored in hexadecimal format, so they must be converted to a readable format, such as ASCII

encoded characters. In addition to the format of ShellBags, their locations present a different

problem, because this data is stored in six different locations in the Windows 7 Registry. Each

Duncan 13

location directly corresponds to one other location. For example, the relationship between

BagMRU and Bags is one where one location, BagMRU, houses a list of Most Recently Used

folders, and each MRU entry refers to one specific entry in the other location, Bags, which

holds a complete list of all folders ever accessed (Davies, 2006).

ShellBag Location

In Windows 7, ShellBag data can be found in the HKCU\Software\Microsoft\Windows\Shell

path in two different locations:

· Bags

· BagMRU

The HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\Shell path houses

ShellBag data in two repositories:

· Bags

· BagMRU

Finally, two other repositories hold ShellBag information at the

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer path:

· StreamMRU

· RecentDocs (Khatri, 2011).

In previous versions of Windows, there were other paths that held ShellBag data. The

ShellNoRoam folder under the HKCU\Software\Microsoft\Windows path held the settings for

Duncan 14

remote folders, while the settings for local folders were held in the Shell folder under the same

path. After XP, the ShellNoRoam folder was removed and replaced with the Shell key at the

HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows path which contains Bags

and BagMRU keys. As one can see, the HKCU\Software\Microsoft\Windows\Shell path makes

up the latter part of this other path, but since it is under the Local Settings key, this proves that

the new path holds settings for local folders. The Bags and BagMRU folders under the

HKCU\Software\Classes

Wow6432Node\Local Settings\Software\Microsoft\Windows\Shell path also do not exist in

Windows 7.

 Once the locations of ShellBag data have been established, analysis of this data can

begin. Again, due to the obscure nature of the ShellBag format, the structure of a Bag file must

be analyzed to provide a way to parse this data and convert it to a readable format.

Syntax & Structure

 By itself, the BagMRU key traditionally represents the Desktop. This is because the file

system recognizes the Desktop as the root folder for everything else. Under this key are only

keys that are named 0 or 1. The first 0 is representative of “My Documents,” and the first 1 is

representative of “My Computer.” Under “My Computer”, the C: and D: drives are represented

by the next 0 and 1, respectively. Each key under BagMRU can have a maximum of three

different types of properties, as illustrated in Figure 2. The first property is a listing of items

that have been most recently accessed arranged in numerical order. The second is called

Duncan 15

MRUListEx, and it records the sequence of the MRU items. The most recently updated item is

found in the first four bytes in the binary form of the entry. The next four bytes represent the

second most recently accessed item, and so on. The last property is called NodeSlot. It is a

reference to a corresponding entry about the same item under the Bags folder in the same

path. These properties hold data about the creation, modification, and last access times as well

as the name of the folder to which the entry refers (Zhu, Gladyshev & James, 2009). This

uncovers a particular truth about ShellBags. If the Registry is a database, then BagMRU is a

table that holds the most recently accessed items. Like any relational database, entries in the

BagMRU table act as foreign keys to the Bags table. This is important because of the

relationship between BagMRU and Bags. As previously mentioned, BagMRU holds only the

most recently used folders, and the entries in this list contain a property called NodeSlot whose

value directly correspond to the base-ten numerically named entries in Bags.

Figure 2: Shown above are the three possible properties found under a BagMRU subkey.

The Bags key is differently structured than BagMRU in that its subkeys’ naming system

is not binary. Instead, the sub-keys are simply named numerically starting with 0. The Shell key

found under each numerically named sub-key holds the display settings for a given folder, as

Duncan 16

shown in Figure 3. These settings include starting window position, which view mode has been

selected (i.e. icons, list, details, tiles, content), and how items have been sorted within the

folder (i.e. by Name, Date Modified, Type, Size, etc.). The maximum number of sub-keys under

Bags is indicated in the BagMRU Size value under the Shell key (Zhu, Gladyshev & James, 2009).

Figure 3: Illustrated above are the properties found under a typical Shell key, including sort

method, icon size, and view mode, among others.

 It is important to note that ShellBag information is created only after folders are

accessed in Windows Explorer. Therefore, folders that may exist on the hard drive but have

never been accessed will not have corresponding ShellBag information. The study by Zhu,

Gladyshev & James (2009) has shown that this information is not created until the folder that

has been opened in Windows Explorer has been closed. The method to how this information is

created depends on where folders reside on the hard drive and if they have been accessed

Duncan 17

before. The reason location is relevant is because the Desktop is viewed as the root folder in

the Registry. The researchers conducted their experiments by comparing snapshots of the

Registry in a Windows XP virtual machine before and after a certain action were performed.

The results of these experiments are outlined in the Tables 2.1-2.9 below.

Experiment 1

Location Action

Prexisting SB

Data?
Update Result

Desktop Open True

"MRUListEx" property is updated in the

BagMRU key to reflect the order in

which the most recently opened items

are listed first.

The target MRU item is

marked as the most

recently used item In the

BagMRU key.

Desktop Close True

"MRUListEx" property is updated to say

that the folder is the most recently

opened folder.

N/A

Table 2.1: In the first experiment, the researchers opened and closed a folder located in the

Desktop that had previously been opened and thus had existing corresponding ShellBag data.

The results of this experiment showed how the Registry updates the BagMRU key is for a folder

with preexisting ShellBag data.

Duncan 18

Experiment 2

Location Action

Prexisting SB

Data?
Update Result

Below

Desktop
Open True

BagMRU key is updated first. The

position of the target item is updated in

the sequence value of the "MRUListEx"

property.

Each parent folder is

updated and becomes

the most recently

accessed folder in the

list.

Below

Desktop
Close True Same process as above. Same process as above.

Table 2.2: In the second experiment, the researchers opened and closed a folder in a directory

located in a hierarchical tier below the Desktop that had previously been opened. The results

of this experiment also illustrate that the BagMRU key is updated in the same sequence for

folders in and below the Desktop.

Experiment 3

Location Action

Prexisting SB

Data?
Update Result

Desktop Open False
The system enumerates the contents

of the BagMRU key.

No new Bag information is

created.

Table 2.3: In the third experiment, the researchers only opened a folder located on the Desktop

with no preexisting ShellBag data. The results showed that ShellBag entries are not created

when a folder is opened.

Duncan 19

Experiment 4

Location Action

Prexisting SB

Data?
Update Result

Below

Desktop
Open False

The system enumerates the contents

of the BagMRU key.

No new Bag information is

created, but the target

folder's parents' MRU

items' position was

updated, starting with the

BagMRU key and ending

when no existing items

within the MRU key

matching the target folder

are found.

Table 2.4: In the fourth experiment, the researchers again only opened a folder with no

preexisting ShellBag data, but this time, the folder was located below the Desktop. The results

for this experiment prove that although no new ShellBag entries are created when a folder is

opened, if the folder is located in a directory below the Desktop, the parent folders above the

target folder are updated to have entries in the BagMRU key’s list.

Duncan 20

Experiment 5

Location Action

Prexisting SB

Data?
Update Result

Desktop Close False

The system enumerates the contents

of the BagMRU key to find matching

ShellBag data for the folder, but finds

none.

Registry creates a new

item in the BagMRU key

and a new sub-key of

BagMRU associated with

the new folder.

Table 2.5: In the fifth experiment, the researchers closed a folder located on the Desktop that

had no preexisting ShellBag information. The results showed that the new MRU item created

contains the target folder’s name and timestamp information. The system also updated the

BagMRU key’s “MRUListEx” property by moving the newly created key to the most recently

used position. Finally, the “Display” property of the target folder was written, and its display

settings were written to its Shell sub-key.

Duncan 21

Experiment 6

Location Action

Prexisting SB

Data?
Update Result

Below

Desktop
Close False Same as Experiment 5.

Same as Experiment 5. In

addition, the folder's

ancestors' MRU items'

position was marked as the

most recent item in the

corresponding "MRULIstEx"

property.

Table 2.6: In the sixth experiment, the researchers repeated the process of Experiment 5,

except the folder closed was located below the Desktop. The results showed that before

making the newly closed folder the most recently used item, the folder’s parents were each

sequentially marked as the most recently used item. This is because the user must first

theoretically access the parent folders before accessing the target folder.

Experiment 7

Location Action

Prexisting SB

Data?
Update Result

Any Delete True None.
The ShellBag information is

not deleted, so it remains.

Table 2.7: In the seventh experiment, the researchers deleted a randomly chosen folder from

the file system. The results showed that even though the folder was deleted, its ShellBag data

Duncan 22

remained in the Registry. This is an especially significant finding for the purposes of digital

forensic research.

Experiment 8

Location Action

Prexisting SB

Data?
Update Result

Any

Make new

folder with the

same name as

another folder

True

Existing ShellBag information

for the pre-existing folder is

updated.

The timestamp information

within the MRU item remains the

same.

Table 2.8: In the eighth experiment, the researchers made a new folder located in the same

folder as another folder with the same name. The results showed that the preexisting folder’s

ShellBag data was updated, and a new entry was not made. This brought another interesting

proposition to light. If folders with the same name and path share a spot in the ShellBag data,

how can you tell which one is the original one? This can be done by simply comparing the

creation timestamp in the MRU item to the creation timestamp of the folder stored in that

path. If the two times match, the item may be deemed the original.

Duncan 23

Experiment 9

Location Action

Prexisting SB

Data?
Update Result

Any

Make

new

folder,

but

maximum

number

of Display

keys has

been

reached

False

The folder's Display key is not created but

assigns the "NodeSlot" property under the

folder's MRU key to 1 and updates the

corresponding Shell key.

There are now two

folders associated with

this key.

Table 2.9: In the ninth and final experiment, the researchers created a new folder after the

operating system had already stored the maximum number of ShellBag keys possible. The

results showed that the operating system starts over with the first entry ever created and

added a new NodeSlot property under the key. This shows that there can be two folders

associated with the same ShellBag entry.

Based on experiments conducted, there are three types of updates caused by user

actions:

· Updates to the target folder and its ancestors’ MRU items’ position if these MRU items

exist. No new ShellBag entries are created.

Duncan 24

· Update both the relevant MRU items’ position and the contents of the Shell sub-key

under the folder’s Display key. New ShellBag entry is created.

· No ShellBag information is involved.

In the case of a forensic examiner, the first and second types of user actions are

important because they are what yield results in the ShellBag area. However, due to results in

the experiments, one might see a difficulty that can arise in examining ShellBag data. Since the

information is updated after different kinds of actions, it can be tricky to determine which item

actually caused the change in the data (Zhu, Gladyshev & James, 2009).

To aid in the assembly of a Bag parser, it was important to discover the structure of the

bag file itself. Bag entries have the following structure:

· Most entries start with a solitary integer, followed by 3 carry bytes

· Next 4 bytes are Last Modified Date

· Carry 3 bytes

· Next 4 bytes are short DOS name

· Carry 8 bytes

· Next 4 bytes are creation date and erroneous time

· Next 4 bytes are the Last Accessed Date and real Creation time

· Carry 6 bytes

· Followed by long File Name

· Carry 20 bytes, end entry (Hay, 2004).

Duncan 25

The RecentDocs key can be useful to a forensic examiner to see a list of the last 20 user-

accessed items given in the same binary blob format. The key itself gives this listing, as shown

below in Figure 4. Even more valuable are the sub-keys of RecentDocs, which list the file

extensions for the most recently used files and a separate “Folders” sub-key for folders that

have been accessed, which is illustrated in Figure 4. Therefore, the contents of each sub-key

contain each file that has been recently accessed that has that given file extension. If the item

accessed is not a file, folders are given their own sub-key entitled “Folder.”

Figure 4: The contents of the RecentDocs key are listed above. This information will

prove very valuable in writing a parsing tool.

The final partition of the ShellBag area is the StreamMRU key. The values of this key

contain many different Bag structures that have been pieced together. A StreamMRU key

Duncan 26

would contain, for example, each Bag file that corresponds with the target folder or its ancestor

folders to create a normal directory listing or file path (Khatri, 2004).

It is also important to note that virtual machines are not tracked by ShellBag data. The

Control Panel, for instance, does not have a place in ShellBag data because it has a permanent

path, and thus, cannot be changed (Metz, 2011).

It is convenient that information regarding the structure of ShellBags is already known.

However, it is not readily available in a readable format. The information stored in the ShellBag

data is very cryptic both because of the nature of updates performed in ShellBag data and

because the data is stored as a binary large object, also known as a binary blob. Therefore,

many different pieces of information may be stored in a single blob, such as file and folder

names. A parser must be utilized to translate this data into ASCII encoded entries, meaning

that anyone could read the information in the entries (Davies, 2006). The following section will

discuss an application that will read ShellBag data from the RecentDocs key and produce a

timeline of events that chronicle a user accessing the file system.

Duncan 27

APPLICATION

Overview

Due to the fact that there have been numerous applications written, both commercial

and open source, that analyze ShellBags from the Bags and BagMRU keys, this program pulls

directly from the RecentDocs key to provide a timeline of user events. As a result of research

stating the information that ShellBags are capable of holding, the resulting timeline will display

a list of the most recently accessed files and folders on a machine, from most recent to the least

recent item held in the Bag file’s memory. This program is a command line application running

from a Windows PowerShell script.

Algorithm

 The program starts by getting the properties of the RecentDocs key in the path

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer. Next, the retrieved values are

tested to see if the system has been keeping track of recently used documents. If this returns

false, the script ends. If the test returns true, then the script reads in the MRUListEx property,

which contains pointers to the RecentDocs properties. These pointer values are then read in,

converted to decimal, and compared until both the current and following bytes equal zero, thus

representing a null. This null value ends the current iteration of the loop, moving on to another

value. The real values are read in as hexadecimal values. When all values are read in, these

values are converted to ASCII and printed out into the resulting timeline.

Duncan 28

Source Code

 #
 # ---
 # File name: recentDocuments.ps1
 # Project name: ShellBag Parser
 # ---
 # Creator's name and email: Daniel Duncan duncanda@goldmail.etsu.edu
 # Creator's name and email: Billy Overton overtonb@goldmail.etsu.edu
 # Course-Section: CSCI 4018-088
 # Creation Date: 2/14/2012
 # Date of Last Modification: 3/30/2012
 # ---
 # Purpose: To show the content of ShellBags
 #
 # Input: none
 # Output: Timeline of recently accessed documents and files
 #
 # Note:
 # 1. The RecentDocs registry key must contain entries for the script to return
 # the timeline
 #/

#Read in the registry value
$a = Get-ItemProperty -path
"HKCU:\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs"

See if the registry locaton exists (if it doesn't, then they are not keeping track of
recently used documents
if ($a) {

 # Grab the MRUListEx key values. They are in reverse byte order and are 2 bytes long
 $mrulistex = $a.psobject.Properties["MRUListEx"].Value

 # This will hold the hex values that point to the differnt reccently used documents
 $mrulistexArray = @()

 # Create an array of hex values that correspond to the keys in the hive
 $i = 0
 while ($i -lt $mrulistex.length -and $mrulistex.length -ge 4) {
 $tempstring = "{0:x2}" -f $mrulistex[$i+3]
 $tempstring += "{0:x2}" -f $mrulistex[$i+2]
 $tempstring += "{0:x2}" -f $mrulistex[$i+1]
 $tempstring += "{0:x2}" -f $mrulistex[$i]

Duncan 29

 $mrulistexArray += $tempstring
 $i += 4
 }

 # Write a header
 WRITE-HOST "`nRecently Used Documents"
 WRITE-HOST "-----------------------"

 # Loop through each key listed by the mrulistex list
 $i = 0
 while($mrulistexArray[$i].CompareTo("ffffffff")) {

 # Read in the value, Powershell reads them in as decimals
 $decimal = $a.psobject.Properties[([CONVERT]::toint32($mrulistexArray[$i],16))].Value

 $hexarray = @()

 # I only wanted to grab the filename. So I just read a byte at a time till I find a null.
 $j = 0
 for($j -lt $decimal.length) {

 #break at the first null character
 if($decimal[$j+1] -eq 0 -and $decimal[$j] -eq 0) { break }

 # Grab a byte
 $tempstring = "{0:x2}" -f $decimal[$j+1]
 $tempstring += "{0:x2}" -f $decimal[$j]

 # And add it to the hex array
 $hexarray += $tempstring

 # Jump forward a byte
 $j+=2

 }

 # Remove these external WRITE-HOST statements for decent looking output.
 WRITE-HOST "`t- " -nonewline
 $namearray += $hexarray | foreach {WRITE-HOST –object (
[CHAR][BYTE]([CONVERT]::toint32($_,16))) –nonewline }
 WRITE-HOST ""

 $i++
 }

}
else {
 WRITE-HOST "There are no recently used documents in the registry"
}

Duncan 30

CONCLUSIONS

Program Results

 The aforementioned script proves that the RecentDocs registry key can produce a

timeline of user events, much like the keys in the two other ShellBag locations. The script does

not provide file/folder creation, modification, and access times, but the items given to the user

provide enough evidence to convict a criminal.

Summary

In light of research done in the field of digital forensics, it is possible for a forensic

examiner to analyze the Windows Explorer settings of a person’s computer to determine what

actions took place in the file system of that computer. There are several relevant truths that

can be gleaned from this research. First, there have been some modifications to the registry in

Windows 7 that make it different from XP or any of its predecessors, such as including data for

remote and local folders in the same Shell key. Second, ShellBag data is only created after the

new folder has been closed, not when it is first opened. Third, and most crucial to the forensic

process, this data is never removed from the registry, even when the corresponding folder has

been removed from the file system. Fourth, and almost equally as important, this ShellBag data

contains the short and long folder names, and times for creation, modification, access, and

deletion. Fifth, every folder in the file system begins with the Desktop as the root. Finally, the

Duncan 31

full path for the target directory can be gleaned from ShellBag data to show the location of the

folder in the file system.

All of these facts come together to prove that ShellBag data can be instrumental in

proving the guilt or innocence of a suspect, as it provides a collective listing of all folders that

have ever been present on a computer. By proving that a specific folder exists, the suspect can

be judged on that evidence alone. Although this method of data recovery is susceptible to

countermeasures such as “registry cleanup” applications that delete unused or erroneous

registry keys, ShellBag data has proven to be a clever auditing mechanism built into Windows

operating systems.

Duncan 32

WORKS CITED

Davies, P. (2006). Forensic analysis of the windows registry computer forensics.

In Docstoc docstoc.com. Retrieved from

http://www.docstoc.com/docs/2381418/Forensic-Analysis-of-the-Windows-Registry-

Computer-Forensics

Hay, A. S. (2004, December). WRA guidance. Retrieved from

http://mysite.verizon.net/hartsec/files/WRA_Guidance.pdf

Khatri, Y. (2011, October 04). [Web log message]. Retrieved from https://42llc.net/?p=385

Metz, J. (2011). Windows shell item format. Unpublished manuscript, Computer Science, ,

Available from download.polytechnic.edu.na. Retrieved from

http://download.polytechnic.edu.na/pub4/download.sourceforge.net/pub/sourceforge

/l/project/li/liblnk/Documentation/Windows Shell Item format/Windows Shell Item

format.pdf

Microsoft Support. (2008, February 04). Windows registry information for advanced users.

Retrieved from http://support.microsoft.com/kb/256986

Duncan 33

US-CERT. US-CERT, (2008). Computer forensics. Retrieved from US-CERT website:

http://www.us-cert.gov/reading_room/forensics.pdf

Wikipedia contributors. (2011). Binary large object. In Wikipedia, The Free

Encyclopedia Retrieved from http://en.wikipedia.org/wiki/Binary_large_object

Zhu, Y., Gladyshev, P., & James, J. (2009). Using shellbag information to reconstruct user

activities. Digital Investigation, (6), 69-77. Retrieved from

http://www.dfrws.org/2009/proceedings/p69-zhu.pdf

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2012

	Exploring the Uses of ShellBag Data within the Windows 7 Registry.
	Daniel A. Duncan
	Recommended Citation

	Duncan%2CDaniel-Thesis.pdf

