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Abstract 

 As the so-called “Mothership of the Human Genome,” the cell nucleus must keep 

all vital genetic information safe, but accessible, inside a strong protective envelope. The 

inner membrane of the nuclear envelope is lined by tough but adaptable proteins called 

lamins. While lamins polymerize into fibrous structures that hold up the “walls” of the 

nucleus, they also serve as an internal scaffold for the complex machinery involved in 

DNA replication and gene expression. It is in this later role that we have been looking for 

clues to premature and possibly to normal aging. One type of lamins, Lamin A is made 

through an unusual pathway involving a lipid dependent cleavage of a larger precursor 

called prelamin A
1-3

. The functional significance of this processing pathway is that 

prelamin A cannot assemble and is inhibitory of proper lamina formation. Pathological 

cases of immature lamin A accumulation include Hutchinson-Gilford progeria syndrome 

(HGPS) or Progeria characterized by premature aging and Restrictive Dermopathy (RD), 

a lethal prenatal disease. We have previously shown that accumulation of prelamin A 

leads to cell cycle arrest and drastic changes in expression of genes involved in cell cycle 

control, among those, several members of the FoxO family of transcription factors.  

 The goal of this study was to determine the mechanisms by which accumulation 

of uncleavable prelamin A activates FoxO-mediated cell cycle arrest. Cells expressing an 

uncleavable form of Lamin A in an inducible manner were used to determine subcellular 

distribution of FoxO3a upon accumulation of prelamin A. This was done by indirect 

immunofluorescence and Western blotting. The proliferation rate of these cells and 

controls expressing wild type Lamin A was also determined by measuring the 

incorporation of BrdU into DNA. 



 3 

 During these experiments, it was hypothesized and observed that overexpression 

of prelamin A leads to redistribution of FoxO3a from the cytoplasm of the cell to the 

nucleoplasm. Expression of FoxO3a target genes was accordingly increased, leading to a 

decrease in cell proliferation. 

 The information obtained from this study could not only be of interest in 

broadening our knowledge of the mechanisms of quiescence and aging in general, but 

also could inform the discussion of the use of several therapeutics for the treatment of 

Progeria and other diseases that result from the accumulation of prelamin A. 
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Chapter 1. INTRODUCTION 

 The genetic diseases Hutchinson-Gilford Progeria Syndrome (HGPS) and 

Restrictive Dermopathy (RD) both arise from defects in the endoproteolytic processing 

pathway of prelamin A. The formation of lamin A, from its precursor prelamin A, is an 

unusual protein maturation pathway in that it requires two farnesylation-dependent 

endoproteolytic cleavages. The second cleavage in this pathway is unique to lamin A in 

higher vertebrates and carried out by the protease zmpste24.  

 While Restrictive Dermopathy is lethal, patients with HGPS live, but exhibit 

premature aging which leads to a life expectancy of ~13 years. In RD, the defect is a loss 

of function of zmpste24. In HGPS, there is a mutation in the prelamin A gene that deletes 

the second site where zmpste24 cuts prelamin A. Thus, in both diseases, immature 

prelamin A accumulates, inducing cell quiescence and senescence among other dramatic 

changes in the nuclear structure and function. In cell culture models, induction of cell 

quiescence is co-related with both zmpste24 down-regulation and prelamin A 

accumulation
1
. 

 In both diseases, similar forms of prelamin A accumulate. Remarkably, it has 

been shown that the form of farnesylated and carboxymethylated prelamin A that arises 

in HGPS, known as progerin or Lamin A !50, also occurs at low levels in normal human 

cells and that its expression produces aging-associated phenotypes. The current literature 

on prelamin A indicates a role for its accumulation in cellular senescence, as well as, 

quiescence.  
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 The Forkhead box O (FoxO) transcription factors are emerging as an important 

family of proteins that modulate the expression of genes involved in apoptosis, the cell 

cycle, and other cellular functions 
4
. Four isoforms of the FoxO transcription factors are 

found in mammals- FoxO1, FoxO3, FoxO4, and FoxO6. Akt-dependent phosphorylation 

critically regulates three of the four FoxO isoforms- FoxO1, FoxO3, and FoxO4. 

Furthermore, it has been shown that, in normal cells, Akt-dependent phosphorylation of 

FoxO factors promotes FoxO export from the nucleus to the cytoplasm, thereby 

repressing FoxO transcriptional function.  

 This family of transcription factors 

is characterized by a conserved DNA-

binding domain (the ‘Forkhead box’ or 

FOX). They participate in diverse 

processes from apoptosis to cell-cycle 

progression to oxidative stress resistance. 

As shown in Figure 1, FoxO factors can 

promote cell cycle arrest by upregulating 

the cell-cycle inhibitor p27
Kip1

 to induce 

G1 arrest or GADD45 to induce G2 arrest 
5
. FoxO proteins are negatively regulated by 

the P13K/Akt signaling pathway. Phosphorylation at three conserved residues by Akt 

results in the export of FoxO factors from the nucleus to the cytoplasm, thereby inhibiting 

FoxO dependent transcription. FoxO proteins are also negatively regulated by a peptidyl-

prolyl isomerase called pin1 
6
. This enzyme also prevents the nuclear accumulation of 

FoxO proteins.  

Figure 1. FoxO transcription factors. Adapted from Carter Me 

and Brunet A. (2007) Current Biology 7(4):R113-114.  
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 In a study of FoxO transcription factors in the maintenance of cellular 

homeostasis during aging, Salih and Brunet have shown that the FoxO factors coordinate 

glucose homeostasis, angiogenesis, stem cell maintenance, immune, muscular, and 

neuronal functions, with implications for diabetes, cancer, autoimmune diseases and 

neurodegeneration 
7
. FoxO factors have been shown to regulate other cellular responses 

in addition to those listed above. Elucidating how FoxO factors operate at the molecular 

level will provide important insights into their organismal function. For this reason, the 

focus of this study will lie in exploring the involvement of FoxO proteins in the 

regulation of cell cycle arrest induced by accumulation of prelamin A. It is hypothesized 

that when uncleavable prelamin A is expressed in 3T3 cells, FoxO proteins will migrate 

to the nucleus and induce cell cycle arrest through the upregulation of the p27
Kip1

 cyclin-

dependent kinase inhibitor.    
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Chapter 2. METHODS AND MATERIALS 

 

Creation of uncleavable prelamin A expressing L647R cell line 

 In normal cells, Lamin A protein is processed by the post-translational pathway 

described in Figure 2.  

 

Figure 2. Maturation of Lamin A Protein by Proteolytic Post-Translational 

Processing. The precursor protein undergoes successive modifications: by the 

enzyme FT (which attaches a farnesyl moiety), followed by Zmpste24- or Rce1-

mediated cleavage of the – SIM residues (AAXing), after which ICMT methylates 

the carboxyl terminus, signalling the 2nd proteolysis, by Zmpste24 (uniquely) 

between the tyrosine (Y) and leucine (L) residues of the RSYLLG Zmpste24 

recognition site, releasing the 2kDa farnesylated c-terminal fragment to yield 

mature LA (72 kDa). 
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In order to develop cells which expressed an uncleavable prelamin A protein, site-

directed mutagenesis was used to mutate the Zmpste24 cleavage site in the Lamin A 

cDNA sequence in a green fluorescent protein-tagged recombinant vector-based 

expression system, thus generating a full-length Prelamin A protein that was unable to 

undergo the final maturation cleavage to form mature Lamin A. The construct, pEGFP-

C3-EGFP-LMNA-L647R, produces an EGFP-tagged protein termed “L647R Prelamin 

A,” in which the CaaX-box is intact, so the farnesyl modification, -aaX cleavage, and 

carboxyl methylation can occur as for Wild-Type Prelamin A
8
. 

 

Measuring BrdU incorporation into DNA 

 3T3 cells and L647R rheoswitch cells
9
 (expressing an uncleavable prelamin A- 

GFP chimera) were seeded in triplicate at 4 x 10
3
 cells/well in a 96-well plate and 

incubated overnight. Cells were then treated with 0nM, 200nM, 400nM, 600nM, and 

800nM concentrations of GenoStat inducer, or DMSO, as a control, for 48 hours. 10 µM 

BrdU was then added to each well in the plate and cells were incubated for 4 hours. BrdU 

incorporated into DNA was detected by incubation with monoclonal anti-BrdU antibody 

linked to HRP. The HRP substrate TMB was used to develop the color. After 30 minutes 

of development, stop solution was added and absorbance at 450 nm was measured using 

a platereader. The quantification of absorbance represented the amount of BrdU 

incorporated into the cells, and indicated the level of proliferation occurring in the 

corresponding cells.    
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Indirect Immunofluorescence 

 Indirect Immunofluorescence was used to examine intracellular protein 

localization. Before visualizing the proteins, growth medium was removed, the cells were 

washed with 1x PBS and pure DMEM medium was added to the cells for visualization. 

The cells were harvested by trypsinization before being transferred to coverslip chamber 

dishes and plated on glass coverslips, which were incubated overnight in regular growth 

medium. Cells received treatment and were then incubated for 48 hours. After incubation, 

the cells were rinsed with 1x PBS prior to fixing by incubation with 4% formaldehyde 

PBS for 15 minutes at room temperature. The cells underwent three PBS washes, and 

were then permeabilized with 0.2% Triton X-100 in PBS for five minutes on ice, washed, 

and blocked with 10% BSA in PBS for five minutes on ice. The cells were incubated 

with primary antibody for one hour at room temperature, washed and incubated with a 

secondary, fluorophore conjugated, antibody for one hour. Following the second 

incubation, cells were washed three times with PBS then treated with DAPI-containing 

anti-fade Mounting Medium to seal the stained cells between the coverslip and a 

microscope slide. Images were obtained using a Nikon Diaphot200 microscope with a 

Oimaging Retiga 2000 cooled CCD digital camera. 

  

Determining the cellular location of FoxO3a protein in prelamin A induced and 

uninduced 3T3 cells 

 Prelamin A expressing L647R Rheoswitch 3T3 cells and control 3T3 cells were 

plated on coverslips and incubated overnight in regular growth medium. Experimental 

cells were incubated for 48 hours in the presence of Genostat inducer (500 mM). Un-
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induced control cells of both types were incubated for 48 hours in the presence of DMSO. 

Cells were then fixed in 4% formaldehyde and analyze by indirect immunofluorescence 

with antibodies against FoxO3 over GFP. Secondary antibodies were Alexa 565 and 488 

respectively. 

 

Separation of Proteins by Electrophoresis 

 All samples were solubilized by the addition of 1XNuPAGE LDS Buffer and 10% 

Bond Breaker (reducing agent) as well as heated in a sand bath for 5 minutes. The 

samples were then cooled back to room temperature before loading an aliquot of each 

sample onto a pre-cast one-dimensional denaturing NuPAGE Noxvex 4-12% Bis-Tris 

SDS PAGE gel. A constant 200 volts for approximately 1-1.5 hour were used to perform 

the electrophoresis. Protein standards were also run with the samples to enable the 

estimation of apparent molecular weights for each sample. 

 

Protein Blotting and Immunodetection 

 The protein gel transfer to a nitro-cellulose membrane was accomplished using 

the iBlot, a dry electroblotter. Manufacturer protocol was followed (Invitrogen/Life 

Technologies, USA). The transfer process lasted approximately 7 minutes. After transfer, 

the membranes were examined to verify protein transfer as evidenced by the visibility of 

standard bands. If transfer was confirmed, the membrane was then blocked in 1X TBST / 

5% Nonfat milk for 1 hour at room temperature or overnight at 4ºC. Following blocking, 

the membrane was washed for 10min, 3 x 5min, and 10min, respectively, in 1X TBST 

and then incubated with primary antibody diluted to the manufacturer suggested 
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concentration in 1X TBST / 5% Nonfat milk for 1 hour at room temperature or overnight 

at 4ºC. The washings were repeated after primary incubation. The membrane was then 

incubated with a 1X TBST / 5% Nonfat milk diluted secondary antibody-HRP conjugate 

at room temperature for one hour. Washings were repeated to remove excess secondary 

antibody conjugate. Bathing the membrane in an ECL chemiluminescence reagent bath 

for 5minutes at room temperature, then draining the excess reagent and wrapping the 

membrane in a plastic film allowed protein band detection. The film was imaged using a 

Chemiluminescence Imaging System with digital photo documentation capability.    

 

Measuring changes in FoxO3a subcellular distribution in response to L647R 

prelamin A expression and Juglone 

 L647R Rheoswitch 3T3 cells (2x10
6
) were plated on 10 cm plates and incubated 

for 48 hours in the presence of GenoStat inducer (500 mM) or DMSO plus the addition of 

0, 5, or 15 mM of Juglone, an inhibitor of pin1. Cells were washed with PBS and scraped 

in 1ML PBS plus 0.1 % NP40. Cells were pipetted up and down five times to break up 

the cells and then 300 "L were taken from each tube and labeled as whole cell lysate 

(W). The remaining 700 "L were centrifuged in an Eppendorf centrifuge for 10 seconds 

at maximum speed. The supernatant was separated from the precipitate and an aliquot of 

300 "L was taken (cytoplasm, C). The pellet was resuspended in PBS plus NP40 and 

centrifuged again for 10 seconds at maximum speed. The pellet was resuspended in 

300"L of 1x PBS/NP40 (Nuclear, N). Aliquots containing DNA (W and N) were 

sonicated for 5 seconds to break up the DNA. Samples were analyzed by Western 

blotting and G-box image analysis. 
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Measuring changes in expression and subcellular distribution of p27
kip

 in response 

to L647R prelamin A expression and Juglone 

 Experimental methods followed those of the above test, which measured changes 

in FoxO3a subcellular distribution in response to L647R prelamin A expression and 

Juglone. 
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Chapter 3. RESULTS 

 

Prelamin A induced cell cycle arrest 

 

 The measurement of BrdU incorporation into cellular DNA was used to 

demonstrate the effects of prelamin A accumulation on cell cycle progression. In 

previous experiments we have shown that prelamin A accumulation is a cause, rather 

than a by product, of cell cycle arrest, and that, L647R prelamin A expressing cells 

exhibit decreased proliferation 
8
.  

 To monitor cellular proliferation in control, 3T3 cells, and experimental, prelamin 

A expressing L647R cells, a bromodeoxyuridine (BrdU) uptake assay was performed. 

This assay was used to monitor cellular proliferation by labeling only newly synthesized 

DNA with BrdU. BrdU incorporation was measured by first treating the cells with an 

anti-BrdU antibody linked to HRP, and then measuring the absorbance of each cell group 

at 450nm to detect the presence of HRP (Figure 3). Control 3T3 cells that do not contain 

a lamin expression vector, and cells from the L647R prelamin A expressing cell line, 

were treated with various concentrations of GenoStat, an inducer, or DMSO, a control, 

for 48 hours before the addition of BrdU to the medium to label actively proliferating 

cells. Examination of Figure 3 reveals that BrdU incorporation and, thus, cell 

proliferation, drastically decreases with the GenoStat induction of prelamin A 

accumulation in the induced L647R cells. The possible concern that repression of 

proliferation in the L647R cells may result from the toxicity of increasing GenoStat 

dosage, is dismissed by the lack of inhibition of proliferation in the unmodified 3T3 cells 

which were also treated with GenoStat inducer. In addition, the lack of proliferation 
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inhibition seen in L647R cells treated with DMSO, provides evidence that the activation 

of prelamin A expression in GenoStat induced L647R cells results in a decrease in 

proliferation of these cells. 

 

 

Figure 3. BrdU Incorporation into DNA. 3T3 cells (Squares) or L647R 

rheoswitch cells (Triangles) were seeded in triplicate at 4 x 10
3
 cells/well in a 96-

well plate and incubated overnight. Cells were then treated with various 

concentrations of GenoStat inducer (filled symbols) or DMSO (empty symbols) 

for 48 hours. Finally, 10 µM BrdU was added to the plate and cells were 

incubated for 4 hours.  BrdU incorporated into DNA was detected by incubation 

with monoclonal anti-BrdU antibody linked to HRP. The HRP substrate TMB 

was used to develop the color and measure absorbance at 450 nm. 
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FoxO3a subcellular re-distribution upon prelamin A accumulation 

 After showing that the accumulation of prelamin A induces cell cycle arrest, the 

second experiment was designed to investigate the impact of prelamin A accumulation on 

FoxO3a proteins within the cells. In this experiment, immunofluorescence imaging was 

used to determine if FoxO3a proteins were localized to the nucleus in L647R prelamin A 

expressing cells, as compared to uninduced control cells (Figure 4- top panel). Cells were 

treated with anti-FoxO3a antibody to reveal the diffuse expression of FoxO3a throughout 

the uninduced cells, and the significant increase in nuclear-concentrated FoxO3a 

expression in prelamin A induced cells.  

 Furthermore, treatment of the cells with an anti-GFP antibody (Figure 4-middle 

panel) revealed accumulation of GFP-tagged L647R prelamin A nucleoplasm and nuclear 

rim of the induced cells. This prelamin A induced florescence is absent from uninduced 

cells.  

 When the two immunoflorescent images are overlaid (Figure 4- bottom panel), 

the nuclear colocalization of FoxO3a and prelaminA becomes clear; however, neither 

nuclear localization nor prelamin A accumulation are present in the uninduced image 

overlay.    
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Figure 4. FoxO3a sub cellular re-distribution upon prelamin A accumulation in 

3T3 cells. L647R Rheoswitch 3T3 cells were plated on coverslips and incubated 

overnight in regular growth medium. Cells were then incubated for 48 hours in 

the presence of GenoStat inducer (500 mM) or DMSO. Cells were then fixed in 

4% formaldehyde and analyzed by indirect immunofluorescence with antibodies 

against FoxO3 over GFP. Secondary antibodies were Alexa 565 and 488 

respectively. 
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Changes in FoxO3a subcellular distribution in response to Juglone 

 The experiment “FoxO3a subcellular re-distribution upon prelamin A 

accumulation” in this study showed that L647R prelamin A expression increases 

expression of FoxO3a and the nuclear translocation of the protein. Because nuclear 

localization of FoxO3a is correlated with activation of the protein, these findings also 

indicate a higher level of FoxO3a activation in prelamin A induced cells. Furthermore, it 

was shown through additional experiments accompanying this study that, p27
Kip1

, a FoxO 

target for transcriptional activation, is also translocated to the cell nucleus, and, its 

expression increased upon prelamin A accumulation and FoxO3 nuclear translocation. 

This finding offers support for a prelamin A-induced effect on FoxO activation, and 

suggests a viable potential mechanism for prelamin A-mediated cell cycle arrest 
8
.  

 Given that pin1 is known to suppress FoxO proteins function, it is expected that 

the increased presence of pin1 in the nucleus of prelamin A induced cells would result in 

decreased FoxO activity. However, when the pathway is examined as a whole, data 

suggests that pin1-mediated suppression of FoxO nuclear translocation is inhibited in 

prelamin A induced cells 
8
. In order to test this hypothesis, the effects of treatment with 

Juglone, a pin1 inhibitor, on FoxO nuclear translocation were observed (Figures 4 and 5). 

This experiment was also used to biochemically confirm the translocation of FoxO3a to 

the nucleus of cells expressing uncleavable prelamin A. This was accomplished by 

performing a nuclear-cytoplasmic fractionation on the whole cell lysate of both control 

3T3 cells and L647R cells expressing prelamin A. Nuclear, cytoplasmic, and whole cell 

samples of each cell type were electrophoresed using a 4-12% gradient SDS-PAGE gel. 

These gels were interpreted with western blotting techniques, knowing that the molecular 



 21 

weight of FoxO3a is approximately 80Kd. The results of this experiment show that 

inhibition of pin1 by Juglone leads to the nuclear redistribution of FoxO3a in control, 

uninduced cells, and, that cells expressing uncleavable prelamin A show higher total 

levels of FoxO3a in the nuclear fractions at all concentrations of pin1 inhibitor 

administered.  

 

Figure 5. Western Blot Evidence for Changes in FoxO3a subcellular distribution 

in response to L647R prelamin A expression and pin1 inhibitor Juglone. L647R 

Rheoswitch 3T3 cells (2x106 were plated on 10 cm plates and incubated for 48 

hours in the presence of GenoStat inducer (500 mM) or DMSO plus the addition 

of 0, 5, or 15 mM of Juglone, an inhibitor of pin1. Cells were washed with 1x 

PBS and scraped in 1ML 1x PBS plus 0.1 % NP40. Cells were pipetted up and 

down five times to break up the cells and then 300 "L were taken from each tube 

and labeled as whole cell lysate (W). The remaining 700 "L were centrifuged in 

an Eppendorf centrifuge for 10 seconds at maximum speed. The supernatant was 

separated from the precipitate and an aliquot of 300 "L was taken (cytoplasm, C). 
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The pellet was re-suspended in 1x PBS plus NP40 and centrifuged again for 10 

seconds at maximum speed. The pellet was resuspended in 300 "L of 1x PBS/ 

NP40 (Nuclear, N). Aliquots containing DNA (W and N) were sonicated for 5 

seconds to break up the DNA. Samples were analyzed by Western blotting. 

 

Figure 6. Graphical Analysis of Western Blot Evidence for Changes in FoxO3a 

subcellular distribution in response to L647R prelamin A expression and pin1 

inhibitor Juglone. This bar graph shows a quantitation of the bands shown in 

Figure 5 using a G-Box image analysis instrument.  

 

Changes in p27
Kip

 subcellular distribution in response to Juglone 

 In conjunction with the previous experiment, the effects of treatment with Juglone 

and prelamin A accumulation on p27
Kip

 expression and localization were also observed. 

P27
Kip1 

is a FoxO3a regulated molecule. The same membrane used in the previous 

experiment was stripped and reprobed. However, instead of probing for FoxO3a, the 

focus was p27
Kip

, which has a molecular weight of 27Kd. From this experiment, it can be 

seen that p27
Kip

 is elevated in the induced uncleavable prelamin A cells as compared to 

the controls, and that the majority of the protein is localized in the nucleus. In addition, 
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the degree of p27
Kip

 elevation increases as the Juglone treatment dosage is increased in 

both the control and induced cells. It is also important to note that the induced cells have 

higher initial levels of p27
Kip

, and that expression in these cells as compared to the 

uninduced cells without Juglone treatment, exhibits little significant change induced by 

pin1 inhibition. 

 

Figure 7. Western Blot Evidence for Changes in expression and subcellular 

distribution of p27
Kip1

 (FoxO proteins regulated molecule) in response to L647R 

expression and pin1 inhibitor, Juglone. The membrane used in Figure 5 was 

stripped and reprobed using an anti-p27
Kip 

antibody. 
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Figure 8. Graphical Analysis of Western Blot Evidence for Changes in expression 

and subcellular distribution of p27
Kip1

 (FoxO proteins regulated molecule) in 

response to L647R expression and pin1 inhibitor Juglone. This bar graph shows a 

quantitation of the bands shown in Figure 7 using a G-Box image analysis 

instrument. 



 25 

Chapter 4. DISCUSSION AND CONCLUSION 

 Over the course of this study, techniques such as immunoflouresence and western 

blotting have been used to further study the mechanisms by which prelamin A activates 

FoxO-mediated cell cycle arrest. The mechanisms involved in this process were found to 

include: translocation of FoxO3a to the nucleus in the presence of uncleavable prelamin 

A, inhibition of pin1, and upregulation of p27
Kip

. It was hypothesized and observed that 

when uncleavable prelamin A is expressed in 3T3 cells, FoxO proteins migrate to the cell 

nucleus and induce cell cycle arrest through the upregulation of the p27 cyclin-dependent 

kinase inhibitor.    

 The first experiments of this study utilized BrdU incorporation into DNA to 

demonstrate how prelamin A accumulation induces cell cycle arrest, and indirect 

immunoflouresence to reveal the effects of this accumulation on sub cellular 

redistribution of FoxO3a. From the first experiment, it can be concluded that prelamin A 

accumulation is a cause, rather than an effect, of cell cycle arrest. In addition, the 

protein’s accumulation during the cell cycle itself, as evidenced by prelamin A 

accumulation due to a lack of maturation processing, is a possible mechanism for 

proliferating cells to coordinate their exit from the cell cycle. The results of this 

experiment supported existing data concerning the role of prelamin A accumulation in the 

cell cycle, and prompted further exploration of this process with regards to the role of 

FoxO3a. The indirect immunoflouresence of both control and prelamin A induced cells 

shown in Figure 4 was used to provide visual evidence for the nuclear accumulation of 

prelamin A, as well as, the nuclear translocation of FoxO3a proteins in prelamin A 

expressing cells.    
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 In studies by graduate student, Christina Bridges, Ph. D., it was shown that 

activity of the Akt phosphorylating pathway is downregulated when prelamin A is 

expressed
8
. Because Akt is the major inducing kinase of FoxO phosphorylation-

dependent export from the nucleus, the observed downregulation of Akt is consistent 

with the nuclear localization and activated FoxO transcriptional regulation noted in this 

study. Additionally, pin1 has been shown to be a primary mediator of the Akt pathway, 

and inhibition of pin1 results in the destabilization and degradation of Akt. It is proposed 

that prelamin A binds and sequesters pin1, such that pin1 inhibition, and thus Akt 

downregulation can be mimicked by prelamin A accumulation. Therefore, if pin1 is 

inhibited by either Juglone or prelamin A accumulation, FoxO should be localized to the 

cell nucleus and actively transcribe target proteins such as p27
Kip

. These predictions are 

supported by Figures 4, 5, 6 and 7, in which Juglone was used to inhibit pin1 in control 

cells and prelamin A expressing cells. The results of both these studies support one 

another and the relationship between FoxO3a nuclear translocation, pin1 and p27
Kip 

activity. Interestingly, while it was shown that treatment with pin1 inhibitor, Juglone, 

increased nuclear translocation of FoxO3a and p27
Kip

 in uninduced, control cells, the 

prelamin A expressing, induced cells, which already exhibited an increased nuclear 

translocation of FoxO3a and p27
Kip

 proteins, did not show a significant increase. These 

findings suggest that expression of prelamin A inhibits the negative effects of pin1 upon 

FoxO3a nuclear translocation, and the resultant p27
Kip 

expression, as well as, that 

prelamin A acts through an undescribed mechanism to sequester pin1, limit its nuclear 

availability and binding to targets. Christina Bridges, Ph. D. remarks that this mechanism 
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of pin1 inhibition could have many consequences for cell cycle regulation due to the 

many targets of pin1 activity 
8
.  

 In conclusion, these studies confirmed that expression of uncleavable prelamin A 

induces cell cycle arrest, and revealed that: the presence of uncleavable prelamin A is 

associated with the translocation of FoxO3a proteins to the nucleus; inhibition of pin1 

leads to a redistribution of FoxO3a to the nucleus in uninduced cells; at all concentrations 

of pin1 inhibitor, cells expressing uncleavable prelamin A show higher total levels and 

increased amounts of FoxO3a in the nuclear fractions; inhibition of pin1 produces results 

similar to those seen with the accumulation of prelamin A in that FoxO3a translocates to 

the nucleus and upregulates p27
Kip

.   

 The goal of this study was to determine the mechanisms by which prelamin A 

accumulation activates FoxO-mediated cell cycle arrest. The mechanisms involved in this 

process were found to include: translocation of FoxO3a to the nucleus in the presence of 

uncleavable prelamin A, inhibition of pin1, and upregulation of p27
Kip

. Further 

experiments that can be done in order to gain a better understanding of these processes 

include: determining the effects of pin1 overexpression, inhibition of pin1 by means other 

than Juglone, exploration of the interactions between pin1 and prelamin A through site 

directed mutations and development of more effective ways to quantitatively explore the 

effects of pin1 and prelamin A accumulation in the translocation of FoxO3a to the cell 

nucleus. Hopefully, when the overexpression of pin1 is studied, a reversal of the effects 

of prelamin A accumulation will be seen, such that cell cycle arrest may be stopped. This 

project and the further studies associated with it have several implications ranging from 

improved treatment of rare disorders such as HGPS and RD, which involve abnormal 
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aging phenotypes, to implications for the more common age-dependent pathologies such 

as diabetes, cancer, autoimmune syndromes and neurodegeneration, and even the normal 

aging process.  
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