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ABSTRACT

VERTICES IN TOTAL DOMINATING SETS

by

Robert E. Dautermann III

Fricke, Haynes, Hedetniemi, Hedetniemi, and Laskar introduced the following concept
[4]. For a graph G = (V;E), let ½ denote a property of interest concerning sets of

vertices. A vertex u is ½-good if u is contained in a fminimum,maximumg ½-set in
G and ½-bad if u is not contained in a ½-set. Let g denote the number of ½-good
vertices and b denote the number of ½-bad vertices. A graph G is called ½-excellent

if every vertex in V is ½-good, ½-commendable if g > b > 0, ½-fair if g = b, and
½-poor if g < b. In this thesis the property of interest is total domination. The
total domination number, °t, is the cardinality of a smallest total dominating set in
a graph. We investigate °t-excellent, °t-commendable, °t-fair, and °t-poor graphs.
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CHAPTER 1

INTRODUCTION

A graph G = (V;E) is a ¯nite nonempty set V (G) of objects called vertices

together with a (possibly empty) set E(G) of unordered pairs of distinct vertices of

G called edges. We will only consider simple graphs, those without directed edges or

loops.

Let jV (G)j = n and jE(G)j = m. Two vertices of a graph are adjacent if there
exists an edge between them. The open neighborhood of a vertex u, denoted as N (u),

consists of all vertices in V (G) which are adjacent to u. The closed neighborhood

of a vertex v, is N [v] = N(v) [ fvg. A graph in which every possible edge exists is
called a complete graph, denoted Kn. The graph G1 in Figure 1 is a the complete

graph on four vertices, K4. For vertices u; v 2 V (G), a u-v path is an alternating
sequence of vertices and edges that begins with the vertex u and ends with the vertex

v in which each edge of the sequence joins the vertex that precedes it in the sequence

to the vertex that follows it in the sequence. Moreover, no vertex is repeated in this

sequence. The number of edges in the sequence is considered the length of the path.

A graph G is connected if for every pair of vertices in V (G), there exists a path

between them. A cycle on n vertices, denoted Cn, is a path which originates and

concludes at the same vertex. The length of a cycle is the number of edges in the

cycle. For example, the graph G2 in Figure 1 is a cycle of length 4, C4. A tree is

a connected graph which contains no cycles. An endvertex is any vertex of degree

1 (that is, a vertex adjacent to exactly one other vertex). A support vertex is any

1
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vertex that is adjacent to at least one endvertex. A bipartite graph G is a graph with

independent sets V1 and V2 where V1 and V2 partition V (G). A complete bipartite

graph is a bipartite graph with partite (disjoint) sets V1 and V2 having the added

property that every vertex of V1 is adjacent to every vertex of V2. Complete bipartite

graphs are denoted Kr;s, where jV1j = r and jV2j = s.
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Figure 1: Complete Graph K4 and Cycle C4

A set S is a dominating set of G if for each v 2 V (G), v 2 S or v is adjacent
to a vertex in S. The domination number °(G) is the minimum cardinality of a

dominating set of G. A dominating set with cardinality °(G) is called a °-set. For a

graph G with no isolated vertices, a total dominating set T is a set of vertices of G

for which every v 2 V (G) is adjacent to a vertex in T . The total domination number
°t(G) is the minimum cardinality of any total dominating set of G. As before, a

total dominating set with cardinality °t(G) is called a °t-set. In this thesis we are

concerned with vertices in total dominating sets.

For an application of total domination, consider a mathematics conference where

the attendees must form a committee to schedule the presentations. It would be
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optimal to have a free °ow of communication between the conference attendees and

the committee and also among the committee members themselves. Therefore we

want the committee to possess two desirable properties. First, that every non member

know at least one member of the committee, for ease of communication. Second, each

member of the committee should have an acquaintance on the committee, to avoid

feelings of isolation and thus enhance co-operation [3]. For example, let Bill, Ted,

Sara, and Marcia be four conference attendees. Suppose Bill knows only Ted and

Marcia knows only Sara, but Ted and Sara know each other. Then both Ted and

Sara must be on the committee, while Bill and Marcia can not be. Had Bill and

Marcia been selected for the committee, then the second property would not be met

and there would be a communication gap on the committee due to the isolation of

both Bill and Marcia.

Consider a graph model of our conference where each person is represented by a

vertex and two vertices are adjacent if the people represented by the vertices know

each other. A committee with these properties is a total dominating set of the ac-

quaintance graph of the conference attendees. If this is the smallest such committee,

then we have a °t-set for the graph representing our conference. If we loosen the

requirements and ask only for a committee comprised of individuals who collectively

know every person at the conference, but not necessarily another committee member,

then we have a dominating set. If this was the smallest such committee, then we

would have a °-set. In this thesis we investigate the total dominating sets of vari-

ous graphs, based on the number of vertices of a graph which are contained in total

dominating sets.
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Fricke, Haynes, Hedetniemi, Hedetniemi, and Laskar [4] introduced the following

concept. For a graph G = (V;E), let ½ denote a property of interest of sets of vertices.

We say that a vertex u is ½-good if u is contained in a fminimum,maximumg ½-set
in G and ½-bad if u is not contained in a ½-set. Let g denote the number of ½-good

vertices and b denote the number of ½-bad vertices. A graph G is called ½-excellent

if every vertex in V is ½-good, ½-commendable if g > b > 0, ½-fair if g = b, and

½-poor if g < b. The property investigated in [4] was that of dominating sets. In

other words, a vertex is °-good if it is contained in some °-set and a vertex is °-bad

if it is contained in no °-set. A graph G is °-excellent if every vertex in V (G) is

°-good, °-commendable if g > b > 0, °-fair if g = b, and °-poor if g < b.

s s s s s s s s
s s s s

P4 P4 ±K1

Figure 2: P4 and P4 ±K1 Graphs

Before introducing our problem, we illustrate this concept with some examples.

Since every graph has a dominating set, obviously every vertex-transitive graph is

°-excellent. In particular, cycles and complete graphs are °-excellent. The 1-corona

G ±K1 associates with every vertex vk 2 V (G) a vertex uk and joins the vertices vk
and uk with the edge vkuk. In Figure 2, a path on four vertices, P4, and the corona of

the P4, P4 ±K1, are represented. In this example, every vertex in V (P4) now supports
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an endvertex in P4 ± K1. Consider the following two °-sets. Let S be the set of all

endvertices in V (P4 ±K1). Since each vertex in S is needed to dominate its support

vertex, S is a °-set. Let T be the set of all support vertices of V (P4 ± K1). Each

vertex in T is needed to dominate its endvertex. Hence, T is a °-set. Therefore, every

vertex in V (P4 ±K1) is °-good and so P4 ±K1 is °-excellent. In fact, using a similar

argument, we can establish that all 1-coronas are °-excellent [4].

For an example of °-commendable graphs, consider a subdivided star K¤
1;t with

t ¸ 2. Since every endvertex or its support must be in every °-set, every vertex in

V (K¤
1;t) is °-good except the center. Moreover, this center vertex will never be in

any °-set and for each endvertex there exists a °-set containing it and another °-set

containing its support vertex. Thus, g = 2t and b = 1. Hence g > b, which implies

that G is °-commendable.

s s s s s s s s
s s s s
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Figure 3: A °-fair caterpillar.

For an example of a °-fair graph, consider the caterpillar T in Figure 3. The good

vertices are labeled g and the bad vertices are labeled b. For this graph, °(T ) = 4

and T is clearly °-fair [4].
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Any star K1;t for t ¸ 2 is °-poor since the only good vertex in a star is the center.
Now we return to the problem of this thesis, where the desired property is total

domination. In particular, we say that a vertex is °t-good if it is in some °t-set and

°t-bad if it is in no °t-set. We investigate °t-excellent, °t-commendable, °t-fair, and

°t-poor graphs. First in Chapter 2 we present some known results on total domination

and then give an overview of the results from [4] on °-excellent graphs. In Chapter 3

we illustrate our concept with examples and present some new results.



CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

2.1 Total Domination

Cockayne, Dawes, and Hedetniemi introduced the concept of total domination. Berge

[1] presented the problem of the ¯ve queens, that is, how to place ¯ve queens on a

chessboard so that every square is dominated by at least one queen [3]. It is easy

to see that the solutions to this problem are dominating sets in the graph whose

vertices represent the 64 squares of the chessboard and vertices a; b are adjacent if a

queen may move from a to b in one move. Now extending the problem to include the

property that not only must all squares be covered by a queen, but each queen must

be covered by at least one other queen. This problem is that of total dominating sets,

where all vertices are covered.

A total dominating set S is said to be minimal if when any vertex v 2 S is

removed from S, then S is no longer a total dominating set. The following theorem

gives two properties pertaining to minimal total dominating sets.

Theorem 2.1 [3] If S is a minimal total dominating set of a connected graph G =

(V;E), then each v 2 S has at least one of the following properties:
P1: There exists a vertex w 2 V ¡ S such that N (w) \ S = fvg;
P2: < S ¡ fvg > contains an isolated vertex.

The following theorem gives an upper bound on the total domination number of

a graph. Recall that n denotes the order of a graph, or the number of vertices in the

7
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vertex set.

Theorem 2.2 [3] If G is a connected graph with n ¸ 3 vertices, then °t(G) · 2n=3.

This theorem shows the best possible upper bound for °t(G). Consider the path P3.

For this path, it is obvious that °t(P3)=2. Since (2 ¤ 3)=3 = 2, the bound is sharp.
The following proof by Henning characterizes connected graphs of order at least

3 with total domination number exactly 2=3 their order. First let us de¯ne the k-

corona. The k-corona of a graph G is the graph of order (k+1)jV (G)j obtained from
G by identifying an endvertex vj of a path of length k with each vertex v 2 V (G) and
attaching this path to v by letting v = vj . The resulting paths are vertex disjoint.

Theorem 2.3 [6] Let G be a connected graph of order n ¸ 3. Then °t(G) = 2n=3 if
and only if G is C3, C6, or the 2-corona of some connected graph.

A 4=7- minimal graph G is edge-minimal with respect to satisfying the following

three conditions:

1: ±(G) ¸ 2
2: G is connected, and

3: °t(G) · 4n=7, where n is the order of G.
Henning further characterizes all 4=7-minimal graphs by the following theorem.

Theorem 2.4 [6] If G is a connected graph of order n with minimum degree at least

2 and G =2 fC3; C5; C6; C10g, then °t(G) · 4n=7.

For all paths Pn, the total domination numbers are known and easily veri¯ed. If

n = 4k, then °t(Pn) = 2k and n ´ 0(mod4). If n = 4k + 1, then °t(Pn) = 2k + 1 and
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n ´ 1(mod4). If n = 4k + 2, then °t(Pn) = 2k + 2 and n ´ 2(mod4). If n = 4k + 3,
then °t(Pn) = 2k + 2 and n ´ 3(mod4). In Chapter 3 we will use these facts to

characterize all °t-excellent, °t-commendable, and °t-fair paths.

2.2 °-excellent Graphs

From [4] we list several signi¯cant observations and results concerning °-excellent

graphs.

Observation 2.5 [4] For any connected graph G6= K2, there exists a °-set contain-

ing all the support vertices of G.

Observation 2.6 [4] For any °-excellent graph G, every endvertex is in some °-set

and no endvertex is in every °-set of G.

For the next observation, consider a support vertex that is adjacent to two or

more endvertices. In this case the support vertex must be in every °-set. As a result,

the endvertices will be in no °-set. Hence, a graph with any support vertex adjacent

to more than one endvertex is not °-excellent.

Observation 2.7 [4] For any °-excellent graph G, any support vertex is adjacent to

exactly one endvertex.

This observation can be seen more clearly if one considers a star, K1;t for t ¸ 2. The
center vertex is adjacent to more than one endvertex. This center vertex dominates

every vertex adjacent to it. It is easily shown that all stars are °-poor.

Proposition 2.8 [4] Every graph is an induced subgraph of a °-excellent graph.
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Proof. Consider any graph H and let G = H ±K1, the 1-corona of a graph H . Every

vertex in V (H) is now a support vertex in G. Therefore, V (H) is a °-set of G. As

well, the set of endvertices in G is a °-set. Hence every vertex in V (G) is in some

°-set and G is °-excellent. Since H is an induced subgraph of G, every graph is an

induced subgraph of some °-excellent graph. 2

The following proof characterizes all °-excellent paths.

Proposition 2.9 [4] A path Pn is °-excellent if and only if n = 2 or n ´ 1(mod3).

Proof. It is a simple exercise to see that the paths P2 and Pn for n ´ 1(mod3) are
°-excellent. Let Pn, n ¸ 3, be a °-excellent path and suppose that n ´ 0; 2(mod3).
If n ´ 0(mod3), then Pn has a unique °-set, which does not include all the vertices.
If n ´ 2(mod3), then no °-set of Pn contains the third vertex on the path. 2

The following theorem will show the connection between °-excellent graphs and

i-excellent, where i(G) is the independent domination number. The independent

domination number is the minimum cardinality among all independent dominating

sets of a graph G, where an independent dominating set is both independent and

dominating.

Theorem 2.10 [4] If T is a °-excellent tree, then °(T ) = i(T ) and T is i-excellent.



CHAPTER 3

EXAMPLES AND RESULTS

This chapter contains sections for each of the following °t-excellent, °t-commendable,

°t-fair, and °t-poor graphs.

We begin with the following observation involving support vertices.

Observation 3.11 Every support vertex must be contained in every °t-set.

Observation 3.12 An endvertex adjacent to two adjacent support vertices will never

be contained in any °t-set.

3.1 °t-excellent Graphs

Every complete graph, a graph containing all possible edges, is °t-excellent. Since

all vertices are adjacent, the selection of any two vertices will form a °t-set. Since

complete graphs are vertex transitive, every vertex is in some °t-set. Moreover, all

vertex transitive graphs are °t-excellent. This includes all cycles, Cn, and all complete

bipartite graphs, Kr;r. In fact, the complete bipartite graph Kr;s is °t-excellent for all

r and s.

Our ¯rst proposition gives the °t-excellent paths. Label the vertices of the path

Pn as v1; v2; : : : ; vn.

Proposition 3.13 Every path Pn for n = 3 or n ´ 2(mod4) is °t-excellent.

Proof. Let Pn be a path for n = 3 or n ´ 2(mod4). Obviously P3 is °t-excellent.

For n ´ 2(mod4), n = 4k + 2 and °t(Pn) = 2k + 2. Note that Pn is °t-excellent for
11
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n = 2 and n = 6. Assume some Pn is °t-excellent for some n = 4k + 2. To show

Pn is °t-excellent for n = 4(k + 1) + 2, we must verify that each of the last four

vertices of P4(k+1)+2 are in some °t-set. Since P4k+2 is assumed to be °t-excellent,

then v4k+2 2 S for some °t-set S. Since v4k+2 2 S, then v4k+3 is dominated. This
leaves v4k+4; v4k+5, and v4k+6 to totally dominate each other. Either v4k+4 and v4k+5

or v4k+5 and v4k+6 can be used to totally dominate these three vertices. So jSj+ 2 =
2k+2+2 = 2(k+1)+2 and v4k+4; v4k+5, and v4k+6 are in some °t-set of P4(k+1)+2. We

need only to show that v4k+3 is in some °t-set with cardinality 2(k+ 1) + 2. To show

this, consider a °t-set T for v4k+2 that contains v4k¡1. The set T exists since P4k+2

is °t-excellent. But v4k+2 is in T since it is a °t-set. So without loss of generality,

let v4k+2 2 S. Then S¡ fv4k+1g [ fv4k+3; v4k+4; v4k+5g is a °t-set for v4k+6 and has
cardinality jSj¡1+3 = jSj+2 = 2k+2+2 = 2(k+1)+2. Hence, P4k+2 is °t-excellent.
2

We now consider the induced subgraphs of °t-excellent graphs. In particular, we

show that any graph G is an induced subgraph of some °t-excellent graph.

As de¯ned in Chapter 2, the generalized 2-corona is obtained from a copy of a

graph G, where for each vertex v 2 V (G), two new vertices v0 and v00, and the edges
vv0 and v0v00 are added. That is, for each vertex v 2 V (G), a pendant path of length
2 is added by identifying an endvertex of the new path P3 with v. Obviously, G is an

induced subgraph of each, the 1-corona G ±K1 and the 2-corona of G. Moreover, G

is an induced subgraph of any k-corona of G.

Proposition 3.14 Every graph H is an induced subgraph of a °t-excellent graph.

Proof. As we have seen, every graph H is an induced subgraph of the 2-corona of
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H. Let G be the 2-corona of a graph H. To see that G is °t-excellent, note that every

°t-set of G must contain all the support vertices and a neighbor for each support

vertex. If v is a support vertex in G, then v is in every °t-set of G and at least one

neighbor of v is in every °t-set. Let S be the set of all support vertices in G and L

be the set of all endvertices of G. Then S [ L and S [ V (H) are each °t-sets of G.
Therefore G is °t-excellent. Since H is an induced subgraph of G, the proposition is

true. 2

Corollary 3.15 There does not exist a forbidden subgraph characterization of the

class of °t-excellent graphs.

s s s s s s s s
s s s s
s s s s

P4 2-corona of P4

Figure 4: P4 and 2-corona of P4 graphs.

The P4 and 2-corona of the P4 are in Figure 4. To help visualize the fore mentioned

proof, one can consider these two graphs. In the 2-corona of the P4, the four support

vertices are in every °t-set. Let the set of support vertices be S, the set of endvertices

be L, and the set of vertices in the P4 be V (H). Clearly, S[L is a °t-set and S[V (H)
is as well.

The graphs G1 and G2 in Figure 5 are each in¯nite families of °t-excellent graphs.

In each graph, the support vertices are in every °t-set. As well, one neighbor of each
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Figure 5: In¯nite Families of °t-excellent Graphs.

support must be in every °t-set. It is a simple exercise to show that each of these

graphs is °t-excellent.

3.2 °t-commendable Graphs

Recall that a graph is °t-commendable if g > b > 0.

Proposition 3.16 Every 1-corona G = H ± K1 with ¢(H) ¸ 1 and ±(H) = 0 is

°t-commendable.

Proof. Let G = H ±K1 with ¢(H) ¸ 1 and ±(H) = 0. This implies that the graph
H has the connected subgraph(s) H1; H2; : : : ; Hk and at least one isolate. For each

Hn, every vertex in V (Hn) is now a support vertex in G. It follows that each V (Hn)

is in a °t-set of G. Further, each isolate of H is a P2 in G. Obviously both vertices of

a P2 are in every °t-set. Thus, g > n=2 implies g > b. Now let u, an endvertex other

than a vertex of a P2, be in a °t-set S. Then the support vertex v of u must also be
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in S, to totally dominate u. This contradicts the minimality of S as a °t-set. Hence

not every vertex in G is in a °t-set, but g > b. Therefore G is °t-commendable. 2

s s s s s s s s
s s s s

H G

Figure 6: P3 [K1 and (P3 [K1) ±K1

For example, consider H = P3 [ K1 displayed in Figure 6. This graph is a P3

with a disjoint singleton vertex. The graph G = H ±K1 in Figure 6 has °t(G) = 5.

Each vertex in H is now a support vertex in G. Clearly each of these support vertices

are needed to dominate their respective endvertices in G. Further, the K1 ±K1 has

total domination number 2. Since each support vertex of G is in every °t-set, and

both vertices of any P2 are in every °t-set, then G contains 5 good vertices and 3

bad vertices. Hence, G is °t-commendable. In general, for the 1-corona G = H ±K1,

°t(G) = jV (H)j+ i, where i is the number of isolates in H, and G has a unique °t-set.
The path P5 is the path on ¯ve vertices. It is easily veri¯able that °t(P5) = 3. In

fact, P5 has a unique °t-set. Since 3 of the 5 vertices of V (P5) are in a °t-set, then

g > b and P5 is °t-commendable. Notice that for P5, 5 ´ 1(mod4). This leads us to
our next proposition.

Proposition 3.17 Every path Pn for n ´ 1(mod4) and n ´ 3(mod4), but n6= 3 is
°t-commendable.
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Proof. Let Pn be a path and n ´ 1(mod4). Recall that for n ´ 1(mod4), n = 4k+1
and °t(Pn) = 2k + 1. To be °t-commendable, there must be more good vertices

than bad, but not every vertex can be good (this would imply °t-excellent). Clearly

there are more good vertices than bad, since 2k + 1 > (4k + 1)=2. For n = 5, Pn

has a unique °t-set and the endvertices are not included. Thus consider n ¸ 9. Let
the endvertex v1 2 S for some °t-set S. Then v2 2 S and the vertices v1; v2; v3 are
totally dominated. Hence, there are n ¡ 3 vertices remaining to totally dominate.
Since n = 4k + 1, n ¡ 3 = 4(k ¡ 1) + 2 and n ¡ 3 ´ 2(mod4). It follows that

°t(Pn¡3) = 2(k ¡ 1) + 2 = 2k. Therefore if an endvertex is in a °t-set S, then S has
cardinality 2k+2, which is a contradiction since °t(P4k+1) = 2k+1. Hence, not every

vertex is in a °t-set, but g > b. Therefore, Pn for n ´ 1(mod4) is °t-commendable.
Next let Pn be a path and n ´ 3(mod4) but n 6= 3. Clearly g > b for Pn since

°t(Pn) = 2k + 2 > (4k + 3)=2. Since n ´ 3(mod4), then n = 4k + 3. Suppose v4 2 S,
the fourth vertex from either end of the path, for some °t-set S. Then there are

subgraphs P3 and P4(k¡1)+3 to totally dominate. But °t(P3) = 2 and °t(P4(k¡1)+3) =

2(k¡ 1)+ 2 = 2k, implying that 2k+2+ 1 vertices are needed to totally dominate a
P4k+3 if v4 is in S. This is a contradiction since °t(P4k+3) = 2k + 26= 2k + 3. Hence,
not every vertex is in a °t-set. Therefore, Pn for n ´ 3(mod4) is °t-commendable. 2

We now consider the induced subgraphs of °t-commendable graphs. In particular,

we show that any graph H is an induced subgraph of some °t-commendable graph.

Proposition 3.18 Every graph H is an induced subgraph of a °t-commendable graph.

Proof. Let H be a graph. Let G be the 3-corona of H with the following property.

For each vertex vi 2 V (H), add vertex vi0 and edge vivi0 to the 3-corona ofH . Clearly
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H is an induced subgraph of G. Now we need only show that G is °t-commendable,

or that g > b > 0.

Let H1; H2; ¢ ¢ ¢ ; Hk be components of H . Either jV (Hi)j > 1 or jV (Hi)j = 1. Let
jV (Hi)j = 1. This implies that Hi is an isolate, say the vertex ui. In G, ui is a

support vertex of a P5. A P5 has a unique °t-set and, it follows that °t(P5) = 3 and

every P5 is °t-commendable. Therefore, for every isolated vertex in H, we have a

°t-commendable subgraph in G.

Now let jV (Hj)j > 1. This implies that each vj 2 V (Hj) is a support vertex in

G. Moreover, each vj is adjacent to at least 1 other support vertex, vh 2 G. These
support vertices dominate each other, and by Observation 3.12 the endvertices vj0
and vh0 are not in any °t-set of G. Furthermore, these are the only bad vertices of G.
Since each subgraph of G is °t-commendable, it follows that the g > b for the entire

graph G. Hence, G is °t-commendable and the proposition is true. 2

Corollary 3.19 There does not exist a forbidden subgraph characterization of the

class of °t-commendable graphs.
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Figure 7: In¯nite Family of °t-commendable Graphs.
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The graph G in Figure 7 is another in¯nite family of °t-commendable graphs. Each

support vertex in this graph is in every °t-set. However, the only endvertices in any

°t-set are those which are adjacent to the outermost support vertices. The endvertices

adjacent to the center support vertex are in no °t-set. If each support is adjacent to

the same number of support vertices, the resultant graph is °t-commendable.

3.3 °t-fair Graphs

For a graph to be °t-fair, we must have the same number of good vertices as bad.

This leads us to the following observation.

Observation 3.20 All °t-fair graphs must have even order.

Consider the path P4. This graph has a unique °t-set (only the two central vertices

are in a °t-set) and °t(P4) = 2. Exactly half of the vertices in V (P4) are good and

half are bad. This implies that P4 is °t-fair.

We now have the following proposition concerning °t-fair paths.

Proposition 3.21 A path Pn is °t-fair if and only if n ´ 0(mod4).

Proof. Let Pn be a path and n ´ 0(mod4). Then n = 4k and °t(Pn) = 2k. Since

every P4k has a unique °t-set, P4k is °t-fair.

Assume Pn is °t-fair. Then from Proposition 3.13 and Proposition 3.17, n 6= 3

and n 6́1; 2; 3(mod4). Hence, n ´ 0(mod4). 2

Proposition 3.22 Any connected graph G = H ±K1 is °t-fair when jV (H)j ¸ 2.
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Proof. Let G = H ±K1 be a connected graph. Clearly jV (G)j=2jV (H)j, so the order
of G is even. Since all vertices in the subgraph H of G are needed to dominate their

endvertices and each vertex in H is adjacent to another vertex in H, °t(G) = jV (H)j,
where V (H) is a total dominating set of G. Notice that V (H) is the set of all

support vertices of G. Since all support vertices must be contained in every °t-set,

the inclusion of any endvertex would violate the minimality of a °t-set. Hence, G is

°t-fair. 2

Corollary 3.23 Every connected graph H is the induced subgraph of a °t-fair graph.

From Corollary 3.23 we see that there is no induced subgraph characterization of

°t-fair graphs.

The graph P4 ± K1 in Figure 2 is the 1-corona of the connected graph P4. The

order n of this graph is even, which is a necessary condition for °t-fair. Notice that

the support vertices of this graph are the unique °t-set and no endvertex can be in

any °t-set.
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Figure 8: °t-fair Graphs.
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Each of the graphs G1 and G2 in Figure 8 are °t-fair. For graph G1, °t(G1) = 3.

The only good vertices are each of the two support vertices and the two central

vertices of degree 4. The remaining 4 vertices will be in no °t-set. The graph G2

is an in¯nite family of °t-fair graphs. Notice that exactly 1 of the support vertices

is adjacent to exactly 2 endvertices. The center and the support vertices form the

unique °t-set of G2.

3.4 °t-poor Graphs

A graph G is °t-poor if g < b. We have shown in the previous three sections that

all the paths Pn for n ´ 2(mod4) is °t-excellent, n ´ 1(mod4) and n ´ 3(mod4)

are °t-commendable, and n ´ 0(mod4) are °t-fair. Therefore we have the following
corollary.

Corollary 3.24 There does not exist a °t-poor path Pn.

We now consider the induced subgraphs of °t-poor graphs. In particular, we show

that any graph H is an induced subgraph of some °t-poor graph.

Let H be a graph. De¯ne G = H ± Ij, where Ij is j isolates, as, for every vertex
v 2 V (H), add j ¸ 2 endvertices adjacent to v. Clearly, H is an induced subgraph

of G.

Proposition 3.25 Every graph H, where ±(H) ¸ 1, is an induced subgraph of a

°t-poor graph.

Proof. Let G = H ± Ij, where ±(H) ¸ 1. As we have previously seen, H is an

induced subgraph of G. To prove this proposition, we need only show that G is
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°t-poor. Since ±(H) ¸ 1, every vertex v 2 V (H) has a neighbor in V (H). Notice
that each vertex v 2 V (H) is a support vertex in G. Therefore, every support vertex
in G is adjacent to another support vertex in G, dominating one another and their

adjacent endvertices. This implies that G has a unique °t-set, V (H). For each vertex

v 2 V (H), v has j support vertices adjacent to it, of which none will be in any °t-set.
By de¯nition, j ¸ 2. This implies that for jV (H)j good vertices, there exist jjV (H)j
bad vertices. Clearly there exist more bad vertices in G than good vertices. Hence,

G is °t-poor and the proposition is true. 2

Corollary 3.26 There does not exist a forbidden induced subgraph characterization

of the class of °t-poor graphs.
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Figure 9: In¯nite Families of °t-poor Graphs

In each of the °t-poor graphs in Figure 9, all of the support vertices must be in

every °t-set. Each of these graphs has a unique °t-set, the support vertices. Hence

b > g, which implies °t-poor.
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